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NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of Transportation in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or 

manufacturers’ names appear herein solely because they are considered essential to the objective 

of this report. The findings and conclusions in this report are those of the author(s) and do not 

necessarily represent the views of the funding agency. This document does not constitute FAA 

policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as 

to its use. 
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LEGAL DISCLAIMER 

The information provided herein may include content supplied by third parties. Although the data 

and information contained herein has been produced or processed from sources believed to be 

reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding 

the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, 

conclusions or recommendations provided herein. Distribution of the information contained herein 

does not constitute an endorsement or warranty of the data or information provided herein by the 

Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal 

Aviation Administration nor the U.S. Department of Transportation shall be held liable for any 

improper or incorrect use of the information contained herein and assumes no responsibility for 

anyone’s use of the information. The Federal Aviation Administration and U.S. Department of 

Transportation shall not be liable for any claim for any loss, harm, or other damages arising from 

access to or use of data or information, including without limitation any direct, indirect, incidental, 

exemplary, special or consequential damages, even if advised of the possibility of such damages. 

The Federal Aviation Administration shall not be liable to anyone for any decision made or action 

taken, or not taken, in reliance on the information contained herein.  
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EXECUTIVE SUMMARY 

This report presents the development and implementation of a reproducible modeling framework 

to forecast the integration of Advanced Air Mobility (AAM) into the National Airspace System 

(NAS). Building on prior work, the project refined the ASSURE A36 metropolitan ranking 

methodology by updating datasets and incorporating new variables to identify the most suitable 

Combined Statistical Areas (CSAs) for AAM/Urban Air Mobility (UAM) deployment prior to 

developing a methodology assessing the potential impact of Part 135 AAM/UAM transportation 

on enplanement shifts within metropolitan areas. In developing a methodology to assess how Part 

135 AAM/UAM transportation integration would influence potential enplanement shifts within 

metropolitan areas, a three-phase approach was used to develop a Terminal Area Forecast – 

Modernized 2 (TAF-M2) model: 1) establish baseline enplanement forecasts; 2) model 

enplanement shifts due to AAM/UAM using a nested logit framework; and 3) produce revised 25-

year forecasts through a forward induction method. The methodology was operationalized using 

Python scripts to process data, estimate parameters, and forecast annual enplanements across six 

CSAs. The result is a flexible data-driven toolset for assessing the future impact of AAM/UAM 

services on airport demand and supporting informed planning and policy decisions. 
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INTRODUCTION 

This final report summarizes the key deliverables from critical subtasks of the A66 FAA project, 

which aims to develop and integrate a comprehensive Advanced Air Mobility (AAM) and Urban 

Air Mobility (UAM) Transportation Integration Forecast Methodology into a Terminal Area 

Forecast -Modernized 2 (TAF-M2) model.  

The first step of the project involved reviewing the existing literature and data sources to identify 

components suitable for an AAM/UAM metropolitan ranking methodology, then proposing an 

algorithm for AAM/UAM metropolitan ranking. As a result, the project team produced a list of 

target CSAs for potential analyses in the later process. The second step involved developing the 

A66 AAM/UAM Transportation Integration Forecast Methodology capable of estimating how 

AAM/UAM integration might affect Part 121 commercial enplanement shifts within metropolitan 

areas. This included producing conceptual data flows, equations and assumptions. The third step 

involved creating Python scripts to implement the full A66 AAM/UAM Transportation Integration 

Forecast Methodology for the selected CSAs, generating transportation mode utility parameters, 

airport utility coefficients, and heterogeneity parameters for the proposed TAF-M2 model. The 

final step included executing the TAF-M2 model with utility parameters and additional data files 

to produce a 25-year forecast of enplanements in each airport within the six selected CSAs.  

REVIEW AND EXPANSION OF A36 METROPOLITAN RANKING 

METHODOLOGY  

2.1 Literature and Data Review 

AAM and UAM represent transformative advancements in metropolitan transportation, offering a 

promising solution to the pressing challenges of urban congestion, pollution, and systemic 

inefficiencies of existing urban transport systems (Goyal, 2018). By integrating sophisticated air-

based transport solutions - such as drones, air taxis, and other electric Vertical Take-Off and 

Landing (eVTOL) vehicles - into existing transportation frameworks, Part 135 AAM/UAM 

transportation services aim to redefine urban and regional transportation landscapes (Garrow, 

2022; Goyal, 2021). 

As urbanization intensifies globally, metropolitan areas face escalating transportation challenges. 

Traditional ground transportation systems are increasingly strained under the weight of rising 

populations, leading to traffic congestion and environmental degradation (Lu et al., 2021). Part 

135 AAM/UAM transportation services offer innovative solutions to these issues by utilizing 

vertical airspace, reducing ground traffic congestion and enhancing the sustainability of urban and 

regional transport systems. The adoption of these technologies promises to improve urban 

mobility, reduce travel times, and decrease pollution levels, enhancing the overall quality of urban 

life (Haritos et al., 2023; Mahmassani et al., 2024). 

However, an appropriately developed site suitability analysis is critical to the successful 

implementation of AAM/UAM technologies. Not all urban areas are equally prepared for 

implementation of Part 135 AAM/UAM transportation services in terms of existing infrastructure, 

regulatory frameworks, and public acceptance (Haan et al., 2021; Long et al., 2023). The existing 

infrastructure, economic environment, and regulator landscape of a metropolitan area significantly 

impacts the feasibility of deploying Part 135 AAM/UAM transportation services. Furthermore, 



3 

 

environmental considerations, such as air quality improvement and noise pollution reduction, play 

a pivotal role in determining suitable locations for implementing these technologies (Thomas, 

2023; Reiche et al. 2018). 

This literature review explores existing methodologies used to rank metropolitan areas based on 

potential for implementation and expansion of Part 135 AAM/UAM transportation services. Such 

ranking methodologies provide crucial information to stakeholders (e.g., city planners, 

policymakers, private sector leaders) seeking to identify suitable locations for feasible deployment 

of these technologies (Asmer et al., 2024; Goyal et al., 2021). By examining the various 

frameworks, models, and factors previously used to assess viable implementation of Part 135 

AAM/UAM transportation services across different urban and regional contexts, this review notes 

the state of contemporary research, highlighting key site suitability characteristics such as urban 

structure, economic scale, ground traffic congestion levels, travel time indicators, market 

readiness, existing short-haul markets, and social acceptance of AAM/UAM technologies (, 2023; 

Haritos et al., 2023; Olivares et al., 2022). In doing so, this review offers valuable insights 

pertaining to the strengths and limitations of each methodology, as well as feasible inclusion of 

specific site suitability characteristics. This process guided the selection of appropriate strategies 

for the A66 project. 

2.1.1 AAM/UAM Overview 

Ground traffic congestion is a growing problem in the United States. In 2022, total travel delays 

amounted to 8.5 billion hours, costing approximately $224 billion in lost revenue and wasted fuel 

consumption – an increase of approximately 4.7 times the amount of the total travel delay from 

1982 (Texas A&M Transportation Institute, 2023). Moreover, congestion-related delays have 

increased to seven times the 1982 levels in urban areas with populations under 500,000 individuals 

(Texas A&M Transportation Institute, 2023). According to the INRIX 2023 Global Traffic Report, 

the US contains four of the top ten cities in the world with the highest amount of traffic delays: a) 

New York City; b) Chicago; c) Los Angeles; and d) Boston (INRIX, 2023). In response to the 

challenges associated with ever increasing ground traffic congestion, AAM/UAM technologies are 

being proposed as the optimized solution to enhance urban and regional mobility to and from 

nearby airports, thereby reducing the ground traffic congestion caused by airport related 

transportation. As part of the broader aerospace and transportation industries, innovations in 

AAM/UAM technology have been driven by the ambition to revolutionize transportation of people 

and goods across diverse landscapes (Pak et al., 2024). While UAM primarily focuses on intra-

city travel utilizing eVTOL vehicles, AAM seeks to expand this scope to include intra-regional 

travel, potentially connecting adjacent cities and rural areas (FAA, 2023b). 

2.1.1.1 Regulatory Framework for AAM/UAM Operations 

To facilitate the integration of AAM/UAM technologies into the National Airspace System (NAS), 

the FAA has developed the Innovate28 (I28) initiative which aims to establish integrated AAM 

operations with Original Equipment Manufacturers (OEMs) and/or operators flying between 

multiple origin and destination locations by 2028 (FAA, 2023a). This detailed implementation 

plan outlines a replicable methodology which will be updated periodically to reflect the continued 

plans and progress of AAM integration as work continues to advance towards the mature state 

vision of AAM operations across the NAS. The near-term I28 initiative addresses key site 

operations, workstreams, an integrated master schedule, and an AAM evolution framework. In 
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doing so, the FAA details the regulatory and operational milestones that must be achieved to safely 

and efficiently integrate AAM into the NAS. To date, the FAA regulates AAM/UAM services in 

accordance with Title 14 Code of Federal Regulations (CFR) Part 135, Part 141, and Part 145. 

2.1.1.2 Title 14 CFR Part 135 Air Carrier and Operator Certification 

Title 14 CFR Part 135 Air Carrier and Operator Certification regulations provide an in-depth guide 

for operators seeking certification to conduct on-demand and scheduled air services. The 

certification process is divided into five phases: pre-application, formal application, document 

compliance, demonstration, and inspection. Each phase ensures that operators meet the FAA’s 

strict safety, maintenance, and operational standards (FAA, 2024b). 

The Part 135 certification process is crucial for operators who wish to conduct on-demand or 

scheduled air services. Applicants must determine the type, kind, and scope of operations before 

starting the certification process, familiarizing themselves with the necessary equipment, facilities, 

personnel, manuals, and programs required for compliance. Part 135 certificates come in various 

types, including Air Carrier and Operating certificates, each with specific operational limitations 

based on aircraft size, passenger capacity, and the scope of operations, such as single-pilot or single 

pilot-in-command operations (FAA, 2023c). 

There are different operational authorities within Part 135 certification, like On-demand and 

Commuter operations, each with its own restrictions on the number of passenger seats, aircraft 

size, and geographical areas of operation. The scope of operations is further defined by the FAA 

through Operations Specifications (OpSpecs). Applicants must develop and maintain manuals, 

training programs, and designate management positions, though some deviations are allowed for 

smaller operators. Certification requires thorough preparation and understanding of FAA 

regulations, as ongoing compliance is essential for maintaining operational authority (FAA, 

2023c). 

Operators can choose from different levels of certification depending on the complexity of their 

operations, ranging from Single Pilot and Single Pilot in Command to Basic and Standard Part 135 

operators. These levels determine the size of the fleet, the number of pilots, and the geographical 

reach of operations. Each level has specific limitations and requirements, and as the business 

grows, operators can apply to expand their scope through an abbreviated certification process. 

Ongoing communication with the FAA and compliance with regulatory standards is critical for 

maintaining certification (FAA, 2023c). 

To obtain a Part 135 certificate, applicants must meet several general requirements, including US 

citizenship, establishing a principal base of operations, and having exclusive use of at least one 

aircraft that meets specific regulatory criteria. Maintenance for Part 135 operations is more 

stringent than for Part 91, with varying requirements based on the aircraft's seating capacity. 

Applicants must also obtain economic authority from the Department of Transportation and 

provide evidence of insurance coverage (FAA, 2024d). 

Most eVTOLs are expected to operate within Part 135 regulations, which include recently updated 

regulations incorporating “powered-lift” operations into the broader commercial aviation 

framework. The FAA is currently in the process of developing special conditions and additional 

airworthiness criteria specific to AAM/UAM aircraft (FAA, 2024a). 
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2.1.1.3 Title 14 CFR Part 141 Pilot School Certification 

Title 14 CFR Part 141 Pilot School Certification regulations, established January 24, 2024, aim to 

streamline application processing and improve applicant readiness. This certification process is 

structured into five phases: Pre-application, Formal Application, Document Compliance, 

Demonstration and Inspection, and Certification. Part 141 pilot schools, which differ from Part 61 

schools by requiring structured training programs and dedicated facilities, must meet stringent 

FAA standards throughout these phases, including thorough documentation and facility 

inspections. Successful completion of these phases results in the issuance of an Air Agency 

Certificate and training specifications (FAA, 2024e). 

Part 141 pilot schools can offer a range of courses, including recreational and private pilot training, 

instrument ratings, commercial pilot training, and specialized courses such as airline transport pilot 

(ATP) certification and flight instructor refresher courses. During the certification process, the 

FAA reviews and approves the school's training curricula, facilities, equipment, and personnel to 

ensure they meet all regulatory requirements. The new certification process also emphasizes the 

importance of continuous interaction between the applicant and the FAA to ensure all standards 

are met, ultimately leading to the issuance of the Air Agency Certificate that allows the school to 

operate under Part 141 regulations (FAA, 2024e). 

2.1.1.4 Title 14 CFR Part 145 Air Agency Certification 

Title 14 CFR Part 145 Air Agency Certification regulations are essential for repair stations that 

perform maintenance, preventive maintenance, or alterations on aircraft and related components. 

The certification process is detailed and involves multiple phases, including pre-application, 

formal application, document compliance, demonstration and inspection, and certification. Each 

phase ensures that repair stations meet strict FAA standards for safety, personnel qualifications, 

and operational procedures (FAA, 2024f). 

Repair stations seeking certification must comply with the FAA's stringent requirements, which 

include having qualified personnel, appropriate facilities, and approved manuals. The certification 

process also involves a thorough review and inspection by the FAA to ensure the station's 

compliance with regulatory standards. The certification process is supported by various resources 

provided by the FAA, including advisory circulars, orders, and guidelines that outline the 

requirements and steps for obtaining and maintaining certification. These resources help applicants 

understand the regulatory framework and ensure they meet all necessary criteria for successful 

certification (FAA, 2024g). 

2.1.2 Ranking U.S. Metropolitan Areas for Potential AAM/UAM Transportation Service 

Integration 

As AAM/UAM technologies transition from conceptual frameworks to operational technologies, 

the need for a strategic evaluation and systematic ranking of US metropolitan areas based on 

potential for implementation and expansion of Part 135 AAM/UAM transportation services 

becomes critical. Not only do such assessments pinpoint US metropolitan areas equipped with the 

necessary existing infrastructure to implement Part 135 AAM/UAM transportation services but 

also identify those characterized by the supportive urban structures, dynamic economic conditions, 

and market readiness to integrate and scale such air mobility solutions (Haan et al., 2021; Haritos 

et al., 2023; Olivares et al., 2022; Reiche et al., 2018). Such evaluations enable policymakers, 

urban planners, and private stakeholders to prioritize investments, adjust regulations, and initiate 
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pilot projects in strategically chosen locations. This approach enables AAM/UAM deployment to 

be finely tuned to the unique characteristics of each US metropolitan area, maximizing the benefits 

of aerial mobility while seamlessly integrating into the existing urban fabric and minimizing 

potential disruptions. This proactive approach to strategic planning aims to reduce ground traffic 

congestion issues related to airport transit effectively and sustainably by transforming urban 

transportation into a more manageable and efficient system for the future (Haan et al., 2021; 

Haritos et al., 2023; Olivares et al., 2022). 

Various methodologies have been developed to estimate the demand for AAM/UAM 

transportation services worldwide to identify cities and regions with the highest potential for 

AAM/UAM transportation integration (Haan et al., 2021; Haritos et al., 2023; Long et al., 2023; 

Mayakonda et al., 2020; Olivares et al., 2022; Reiche et al., 2018). Such methodologies can be 

categorized as either: a) top-down methodologies; or b) bottom-up methodologies. Top-down 

methodologies begin with a broad, macroscopic perspective, assessing general trends and 

overarching regulatory frameworks to anticipate how such mechanisms might influence smaller, 

more specific aspects of urban mobility (Böhringer et al., 2008). Such an approach is useful for 

understanding the widespread impacts of market readiness and large-scale economic shifts on 

urban development and urban mobility trends; however, top-down methodologies may overlook 

local nuances, which, in some cases, may slow the adaptation to economic, urban mobility, and 

technological advancement trends. In contrast, bottom-up methodologies take a more granular 

approach, opting to begin at the micro-level with specific local data points (e.g., individual traveler 

behavior, specific operational challenges) and building upwards to create a detailed picture of 

potential scenarios (Böhringer et al., 2009). Such an approach is particularly adept at addressing 

the practical realities and localized needs of implementing Part 135 AAM/UAM transportation 

systems; however, bottom-up methodologies are resource-intensive due to the micro-level data 

required, potentially challenging to scale, and complex to coordinate across larger regions. 

2.1.2.1 Top-Down Methodologies 

2.1.2.1.1 SMART Model 

As part of a broader research effort to estimate AAM passenger market demand, the ASSURE A36 

team adopted a top-down methodology focusing on providing a comprehensive analysis of urban 

and regional metrics to assess and prioritize US metropolitan areas with potential for 

implementation of Part 135 AAM/UAM transportation services (Olivares et al., 2022). Utilizing 

the Simple Multi-Attribute Rating Technique (SMART), the ASSURE A36 team developed site 

suitability scores for the Top 100 Most Populous US Metropolitan Statistical Areas (MSAs) by 

incorporating a blend of urban structure, economic scale, congestion and travel time, and market 

readiness variables (Olivares et al., 2022). Through this approach, each MSA was assigned a final 

score using the weighted average of standardized market condition attributes. Under the SMART 

model, such weights reflect the relative importance of each variable to the decision-maker 

(Olivares et al., 2022). The ASSURE A36 research team calibrated these weights by emphasizing 

the market conditions of UAM launch cities.  

To evaluate the ranked result, the A36 team employed psychometric techniques to validate the 

factors influencing site suitability and segment potential for US MSAs. Statistical analyses for 

psychometric validation, such as Principal Component Analysis (PCA), were used to assess the 

reliability and validity of the measurement constructs. Following validation, the A36 team grouped 
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potential sites into categories based upon suitability score. This segmentation helped identify 

which US metropolitan areas were most likely to success as early adopters of Part 135 AAM/UAM 

technologies (Olivares et al., 2022). Upon finalizing the MSA rankings, a Bass diffusion model 

was applied to each MSA to estimate Part 135 AAM/UAM market penetration (Bass, 1969; 

Olivares et al., 2022).  

In subsequent research, the ASSURE A41 team leveraged the results of the ASSURE A36 site 

suitability analysis detailing the Top 30 Most Populous US MSAs to derive AAM passenger 

revenue, VTOL aircraft needs/associated capital/operational expenditures, and vertiport 

infrastructure needs/associated capital/operational expenditures for subsequent input into an 

economic impact model (Haritos et al., 2023). 

The primary advantage of the SMART Model is its thorough approach in combining multiple 

factors influencing site suitability for Part 135 AAM/UAM transportation services, offering a 

detailed and nuanced understanding of each potential site based upon a composite of metrics. This 

comprehensive analysis aids stakeholders in making informed decisions based upon a multitude 

of intersecting factors, thereby increasing the likelihood of successful Part 135 AAM/UAM 

transportation services deployment in chosen locations. Furthermore, the psychometric validation 

aspect ensures reliability and validity of the metrics used in assessing site suitability. However, 

one notable disadvantage of the SMART Model is the complexity and resource intensiveness 

required by this approach, as gathering, validating, and analyzing such a broad range of data can 

be costly and time-consuming. 

2.1.2.1.2 Willingness-to-Pay Model 

To forecast UAM demand globally, Mayakonda et al. (2020) utilized a willingness-to-pay model. 

In utilizing this model, Mayakonda et al. (2020) defined the scope of UAM operations as the 

percentage of total ground-based passenger traffic within a metropolitan area. Their research 

sought to calculate the share of passenger-kilometers which could potentially be addressed through 

UAM transportation services. To this end, the willingness-to-pay model was implemented to 

estimate the percentage of the population that might choose UAM transportation services over 

traditional ground transportation modes based on the value of travel time savings versus the 

associated costs of alternative modes of transportation. 

The primary advantage of the willingness-to-pay model lies in its ability to leverage extensive 

datasets for wide-ranging analyses, which can be highly effective for strategic planning at a global 

scale, allowing for an assessment of overarching trends and the potential impact of regulatory 

changes across different regions. The primary disadvantages of the willingness-to-pay model 

include its potential for overlooking local specificities and nuances that might influence UAM 

viability (e.g., features of a metropolitan area are assumed to be identical to other metropolitan 

areas). Furthermore, it is underscored by the inability to adapt to rapid or localized changes (e.g., 

improvements to existing public ground transportation systems, increased/decreased AAM/UAM 

investments), as well as the potential inability to accurately assess unique operational challenges 

or community readiness at the micro-level. 

2.1.2.1.3 Gravity Model 

Becker et al. (2018) developed a global gravity model to forecast interurban air passenger demand 

and identify potential markets for UAM from 2018 through 2042, assessing 4,435 settlements 

worldwide. The gravity model predicts the interaction between two entities (e.g., cities) based 
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upon attractiveness and distance between them. In the context of UAM, the model utilizes 

socioeconomic variables such as metropolitan population size and Gross Domestic Product (GDP), 

alongside additional variables such as distance, travel costs, and flight frequency, to forecast UAM 

passenger demand. This model serves as a quantitative instrument to analyze potential UAM 

markets by estimating the volume of air passenger traffic between city pairs, thereby facilitating 

strategic planning and investment decisions in the aviation sector. The study provides a 

comprehensive understanding of the feasibility of UAM implementations based on projected air 

travel demands, rendering it an invaluable resource for urban planners and UAM providers aiming 

to exploit emerging urban transport opportunities. 

The advantages of this model include its extensive analytical scope, versatile framework applicable 

across various domains, and robust predictive capabilities for market trends. However, the model's 

limitations involve the potential oversimplification of complex factors influencing air travel 

demand, the requirement for extensive and precise multi-variable data, and high sensitivity to 

specific assumptions and parameters, necessitating meticulous calibration and validation to ensure 

accuracy and reliability in its predictions (Alexander et al. 2020; Aydin et al. 2022). 

2.1.2.2 Bottom-Up Methodologies 

2.1.2.2.1 Mode Choice Model 

Haan et al. (2023) utilized a mode choice model calibrated to a stated preference survey, alongside 

contextual socioeconomic census data and cell phone data pinpointing regular commuters’ home 

and work locations, to estimate potential air taxi demand for commuters in the Top 40 Most 

Populous US CSAs. The mode choice model incorporates individual preferences for various 

transportation modes influenced by attributes such as travel cost, time savings, and available 

infrastructure. This bottom-up approach allows for nuanced predictions of UAM demand, focusing 

on individual-level data and preferences to construct a comprehensive picture of potential market 

penetration at the metropolitan level. 

The primary advantage of this model is its high granularity, enabling precise identification of 

commuter patterns and socio-economic contexts. This detailed approach allows for accurate 

demand forecasting and the tailoring of solutions to specific urban needs. However, notable 

disadvantages include the complexity and resource intensity of data collection and analysis. The 

reliance on extensive data poses challenges in terms of data privacy, integration, and the 

requirement for sophisticated analytical tools and expertise. Additionally, despite its high detail, 

this bottom-up approach may be less scalable across larger regions without significant investment 

in data infrastructure and processing capabilities. 

2.1.2.2.2 Demand Side Model 

Reiche et al. (2018) utilized a first-principles model to calculate market size and value, focusing 

specifically on the airport shuttle and air taxi markets. This comprehensive approach involves a 

five-step process: Trip Generation, Scoping, Trip Distribution, Mode Choice, and the application 

of Constraints. The sequence commences with trip generation, where trips are categorized into 

mandatory and discretionary types based on extensive data sets such as those from the US 

Department of Transportation. These trips are then scoped by the urban areas and distributed using 

models like the gravity model to estimate the number of trips switching from ground to air 

transport. The mode choice step employs the value of time savings to understand consumer 
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preferences, influencing the final market size and viability assessment by incorporating constraints 

such as infrastructure and regulatory limitations. 

The advantages of this methodology include its comprehensive and systematic approach, ensuring 

that all relevant factors are considered. It utilizes detailed data sources and sophisticated modeling 

techniques to provide robust and realistic estimates of market size and value. However, its 

disadvantages include its complexity and resource intensity, requiring extensive data and advanced 

analytical capabilities. Additionally, reliance on current data may limit the ability to accurately 

predict future changes and trends; however, it is the most accurate option currently available to 

predict changes and trends in the future. The methodology is also constrained by the assumptions 

made, which may not fully capture the dynamic and evolving nature of the UAM market. 

2.1.3 Key Factors Influencing Metropolitan Ranking 

The previous section outlines several models which have been used to address the inherent 

complexities of assessing the potential of US metropolitan areas to implement and expand Part 

135 AAM/UAM transportation services. Such models have ranged from gravity models, which 

predict passenger flows based on urban characteristics such as population size and distance, to 

more sophisticated models which integrate behavioral data to determine passenger preferences. 

The efficacy and accuracy of these models largely depends on the specification of the appropriate 

variables. Drawing upon prior research by the ASSURE A36 team, the A66 research team 

identified six critical categories for evaluating the potential of US metropolitan areas to implement 

and expand Part 135 AAM/UAM transportation services: a) urban structure; b) economic scale; c) 

congestion and travel time; d) market readiness; e) existing short-haul markets; and f) social 

factors. Each of these categories plays a crucial role in ranking US metropolitan areas based on 

potential for Part 135 AAM/UAM implementation and expansion, influencing strategic decisions 

regarding where best to implement these innovative mobility solutions.  

2.1.3.1 Urban Structure 

The urban structure of a metropolitan area plays a fundamental role in determining the 

sustainability of Part 135 AAM/UAM transportation services deployment in US metropolitan areas 

by assessing how the physical and organizational layout of a US metropolitan may support 

AAM/UAM solutions. Prior research has demonstrated population density and polycentrism are 

critical for understanding traffic patterns, transportation demand, and the feasibility of integrating 

new technologies into existing urban environments (Arribas-Bel et al., 2024; Gerarudas et al., 

2024; Goyal et al., 2018; Olivares et al., 2022).  

2.1.3.1.1 Population Density 

High population density is often correlated with increased demand for transportation services due 

to the sheer number of people needing to move within a limited geographic area. In dense urban 

environments, traditional ground-based transportation can become highly congested, resulting in 

longer travel times and decreased transportation efficiency. Part 135 AAM/UAM transportation 

services offer an innovative solution to alleviate ground traffic congestion by leveraging vertical 

airspace (Gerardus et al., 2024; Olivares et al., 2022). By providing an alternative aerial 

transportation route, Part 135 AAM/UAM transportation services can significantly reduce the 

travel time of daily commuters and enhance overall mobility efficiency in densely populated areas. 
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2.1.3.1.2 Polycentrism 

Polycentrism refers to the presence of multiple employment centers within a metropolitan area 

(Arribas-Bel et al., 2024). Research suggests regions characterized by multiple urban centers can 

significantly bolster Part 135 AAM/UAM transportation service demand due to inherent 

bidirectional traffic patterns (Arribas-Bel et al., 2014). Such patterns not only maximize aircraft 

occupancy by reducing the number of "deadhead" flights, which operate without paying 

passengers, but also enhance overall operational efficiency (Goyal et al., 2018). This efficiency 

can, in turn, lower travel costs for users, fostering a positive feedback loop that potentially 

increases demand. These dynamics underscore how polycentric urban forms could be crucial in 

the early stages of Part 135 AAM/UAM transportation service deployment, enhancing both the 

economic viability and the sustainability of operations. 

2.1.3.2 Economic Scale 

The economic scale of a metropolitan area significantly impacts its capacity to adopt and sustain 

Part 135 AAM/UAM transportation services. Elements such as the presence of Fortune 1000 

companies, Gross Regional Product (GRP) per capita, and personal income levels provide insights 

regarding the economic vitality and market potential for Part 135 AAM/UAM transportation 

services (Csomós et al., 2014; Garrow et al., 2018; Godfrey et al., 1999; Goyal et al., 2021; Haan 

et al., 2023; Kloss & Riedel, 2021; Panek et al., 2007; Pertz et al., 2023; Reiche et al., 2018). 

Robust economic indicators correlate with a higher likelihood of successful Part 135 AAM/UAM 

transportation service implementation, reflecting the ability of a US metropolitan area to support 

new technological infrastructures and services. 

2.1.3.2.1 Fortune 1000 Presence 

The total number of Fortune 1000 company headquarters within a US metropolitan area serves as 

a reflection of economic activity and business opportunities. In this regard, US metropolitan areas 

with more Fortune 1000 company headquarters reflect higher levels of economic activity, which 

in turn can drive demand for premium transportation services. The presence of Fortune 1000 

company headquarters captures the economic vibrancy and business travel demand potential of a 

US metropolitan area, which are crucial for successful implementation of Part 135 AAM/UAM 

transportation services (Csomós et al., 2014; Godfrey et al., 1999). 

2.1.3.2.2 Gross Regional Product (GRP) per Capita 

GRP per capita measures the economic output of a region, serving as a key indicator of its overall 

economic health and productivity (Panek et al., 2007). A higher GRP per capita suggests a robust 

economic environment that can support the adoption of innovative technologies and services, 

including Part 135 AAM/UAM transportation services (Goyal et al., 2021; Reiche et al., 2018). 

Regions with high GRP per capita are typically characterized by a dynamic mix of industries, 

substantial investment in technology, and a skilled workforce in high-tech sectors, making these 

regions prime candidates for Part 135 AAM/UAM transportation services deployment. These areas 

often have the financial resources and the business need for efficient, rapid transportation solutions 

that Part 135 AAM/UAM transportation services can provide, such as reducing travel time for 

busy professionals or quickly connecting key economic hubs. Furthermore, a strong GRP per 

capita indicates consumer purchasing power and a business climate that may be more receptive to 

premium-priced mobility solutions. In this context, Part 135 AAM/UAM transportation service 

providers can find a ready market for their services, not only in commuter transport but also in 
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applications such as urgent medical transport, high-speed logistical support, and exclusive 

recreational travel. Ultimately, a high GRP per capita can be a precursor to a thriving Part 135 

AAM/UAM transportation ecosystem, fostering a culture of innovation and making the region a 

leader in next-generation urban mobility solutions. 

2.1.3.2.3 Personal Income 

Higher real personal income generally indicates greater disposable income, which can increase the 

likelihood that residents and businesses will adopt new, and potentially more expensive, 

technologies like Part 135 AAM/UAM transportation services (Haan et al., 2023; Kloss & Riedel, 

2021; Pertz et al., 2023). Prior research indicates higher income groups are more likely to support 

Part 135 AAM/UAM transportation aircraft additions to transportation nodes (Garrow et al., 2018; 

Kloss & Riedel, 2021; Yedavalli & Moodberry, 2019). As such, US metropolitan areas with higher 

average income levels should be more receptive to these services, providing a robust customer 

base necessary to sustain operations. At the individual level, higher real personal income can 

influence an individual’s willingness to pay for premium services, which is directly applicable to 

the potential for Part 135 AAM/UAM transportation services implementation and expansion as it 

has direct implications for market size, service pricing strategies, and the ultimate profitability of 

Part 135 AAM/UAM transportation service providers (Garrow et al., 2018; Yedavalli et al., 2019). 

2.1.3.3 Congestion and Travel Time 

Congestion and travel time are critical indicators of the need for alternative transportations 

solutions such as Part 135 AAM/UAM transportation services. Elevated congestion levels and 

prolonged travel times not only deteriorate quality of life but also hinder economic productivity. 

Prior research has often relied on indicators such as the Travel Time Index (TTI), average commute 

time to work, and average drive time from an airport to the Central Business District (CBD) to 

gauge the severity and impact of congestion within urban areas (Haan et al., 2021; Long et al., 

2023; Mahmassani et al., 2024; Rimjha et al., 2021; Sarkar et al., 2023; Zhang et al., 2023). 

Furthermore, such indicators typically identify metropolitan areas which could significantly 

benefit from the time savings and relative travel efficiency offered by Part 135 AAM/UAM 

transportation services. 

2.1.3.3.1 Travel Time Index 

The TTI assesses how peak travel times compare to free-flow conditions, serving as an essential 

tool for assessing traffic congestion severity during the busiest travel periods (Texas A&M 

Transportation Institute, 2023). By providing a quantitative assessment of how much longer trips 

take during peak hours relative to light traffic conditions, the TTI highlights the periods of greatest 

inefficiency within urban transport networks. The TTI is instrumental for evaluating the potential 

impact of Part 135 AAM/UAM transportation services, identifying the travel times and locations 

in which these services could offer the most significant time savings to commuters. In areas with 

higher TTI values, Part 135 AAM/UAM transportation services could significantly reduce travel 

times, offering a compelling alternative to traditional ground transportation. As such, the TTI is a 

crucial variable to consider within a site suitability analysis for Part 135 AAM/UAM transportation 

service deployment, guiding stakeholders by identifying the optimal urban areas for infrastructure 

development and service implementation (Long et al., 2023; Sarkar et al., 2023). 
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2.1.3.3.2 Average Time to Work 

Average commute time serves as a critical indicator of congestion and inefficiency within urban 

transportation networks (Zhang et al., 2023). Longer average commuting times often signal 

congested ground transportation networks, which can make faster, aerial alternatives more 

attractive to commuters. Metropolitan areas with extensive average commute times may therefore 

exhibit a higher demand for Part 135 AAM/UAM transportation services, as residents seek more 

efficient travel options to reduce their daily transit durations. This metric is especially relevant to 

densely populated or geographically expansive cities where ground traffic significantly extends 

daily commutes (Long et al., 2023; Rimjha et al., 2021). In such environments, the introduction of 

Part 135 AAM/UAM transportation services could dramatically improve the quality of life by 

providing quicker, less stressful travel alternatives. Furthermore, these environments can benefit 

economically from the introduction of Part 135 AAM/UAM transportation services, as reduced 

transit times allow for increased labor productivity, enhanced business operational efficiency, and 

greater attractiveness to potential new residents and investors. 

2.1.3.3.3 Airport to CBD Drive Time 

The drive time from each airport to the CBDs in a US metropolitan area reflects the accessibility 

and efficiency of existing ground transportation options for essential business and travel routes. 

As faster travel times between airports and CBDs are crucial for business travelers, this indicator 

serves to highlight areas where Part 135 AAM/UAM services can offer considerable time savings 

(Haan et al., 2021; Mahmassani et al., 2024). Longer drive times due to congested roads or distant 

airport locations can significantly impede the efficiency of business travel and logistics, making 

faster, more direct Part 135 AAM/UAM transportation services increasingly attractive. In 

metropolitan areas where the airport-to-CBD commute are notoriously lengthy or prone to 

unpredictable delays, Part 135 AAM/UAM transportation services can offer a compelling value 

proposition by drastically reducing travel times and enhancing predictability and comfort. This not 

only improves individual traveler experience but also boosts overall business productivity. 

Consequently, metropolitan areas with longer airport-CBD drive times present prime opportunities 

for Part 135 AAM/UAM transportation service implementation that can capitalize on the demand 

for quicker, more efficient travel options. This in turn can lead to early adoption and robust market 

growth in regions where traditional transport infrastructures are less capable of meeting the time-

sensitive needs of modern commuters and businesses. 

2.1.3.4 Market Readiness 

Market readiness assesses the preparation of a metropolitan area to integrate and support Part 135 

AAM/UAM transportation services based on existing infrastructure and regulatory environments. 

Prior research has relied upon indicators such as heliports and airports per capita, regional airport 

presence, Class B airspace presence, Class G airspace congestion, existing investments in related 

technologies in determining the readiness of a region to implement advanced air mobility solutions 

(Anticliff et al., 2021; Bauranov et al., 2021; Haan et al., 2021; Mahmassani et al., 2024; Olivares 

et al., 2021; Reiche et al., 2018; Schuh et al., 2021). 

2.1.3.5 Heliports per Capita 

A higher density of heliports per capita can significantly enhance the operational readiness and 

accessibility of Part 135 AAM/UAM transportation services, providing numerous convenient 

points of departure and arrival. This infrastructure is crucial for the quick adoption and integration 
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of Part 135 AAM/UAM transportation services into urban landscapes (Mahmassani et al., 2024; 

Olivares et al., 2021). Metropolitan areas with a greater number of heliports per capita indicate a 

pre-existing familiarity and acceptance of aerial transport among the population and businesses, 

potentially easing regulatory and societal hurdles. Additionally, these regions may have more 

developed logistical and maintenance frameworks to support aerial operations, facilitating 

smoother and more efficient service implementations. Therefore, evaluating the heliport density 

relative to the population gives a clear insight into which cities might rapidly leverage Part 135 

AAM/UAM transportation services to enhance their transportation networks, thereby improving 

connectivity and reducing travel times for their residents and workforce. However, there is a 

limitation to the data for heliports per capita, as the heliports primarily used for medical purposes 

cannot be distinguished from other heliports.  

2.1.3.6 Airports per Capita 

A higher number of airports suggest enhanced accessibility and convenience, key factors that could 

accelerate the adoption of Part 135 AAM/UAM transportation services (Reiche et al., 2018; Haan 

et al., 2021). Cities with more airports per capita are likely to have better-developed aviation 

infrastructure, including established routes, maintenance facilities, and a population that is more 

accustomed to air travel as a regular mode of transportation. This infrastructure not only supports 

the immediate operational needs of Part 135 AAM/UAM transportation services but also provides 

a foundation for scaling operations as demand grows. Additionally, a greater airport density may 

indicate a higher tolerance and demand for travel options that bypass ground traffic, making these 

metropolitan areas prime targets for Part 135 AAM/UAM transportation service providers looking 

to introduce innovative air mobility solutions. Such environments could significantly benefit from 

reduced travel times and increased connectivity between airports and urban centers, enhancing 

overall economic productivity and quality of life. 

2.1.3.7 Class B Airspace  

Class B airspace is typically found around the busiest airports, characterized by strict air traffic 

control due to the high volume of commercial airline traffic. For Part 135 AAM/UAM 

transportation service operations, navigating through or near Class B airspace requires 

sophisticated coordination and compliance with stringent regulatory requirements to ensure safety 

and minimize disruptions to existing air traffic (Bauranov et al., 2021; Mahmassani et al., 2024; 

Olivares et al., 2022). The integration of Part 135 AAM/UAM transportation service operations 

within these busy airspaces can signal advanced technological capability and operational 

sophistication, which are key for the safe and efficient integration of these services into the national 

airspace. However, the complexity of operations in Class B airspace also poses challenges, 

potentially requiring more robust technological solutions and higher operational standards. 

Metropolitan areas encompassing or adjacent to Class B airspace may thus offer both significant 

opportunities and unique challenges for Part 135 AAM/UAM transportation service providers. 

Successfully operating in these areas could pave the way for widespread acceptance and 

integration of Part 135 AAM/UAM transportation service technologies, particularly in regions 

where the demand for quick, efficient transport is high due to dense population and significant 

economic activity. 
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2.1.3.8 Class G Airspace Congestion 

Class G airspace represents uncontrolled airspace where air traffic control does not provide 

service, typically existing below 1,200 feet outside of controlled airspace zones. The congestion 

level in Class G airspace is an essential metric for assessing the potential for Part 135 AAM/UAM 

transportation services in metropolitan areas. Less congested Class G airspace allows for easier 

entry and operational flexibility for Part 135 AAM/UAM transportation services vehicles, making 

it an attractive feature for cities considering these technologies (Bauranov et al., 2021; Olivares et 

al., 2022). Metropolitan areas with low Class G airspace congestion may provide a more conducive 

environment for piloting and scaling Part 135 AAM/UAM transportation service operations, as 

such areas face fewer barriers to routine flights and less potential for conflicts with other airspace 

users. On the other hand, low Class G airspace congestion may also mean less economic 

attractiveness. This ease of access can accelerate the adoption and integration of Part 135 

AAM/UAM transportation services, enhancing urban connectivity and reducing travel times. 

Conversely, higher Class G airspace congestion could complicate operations due to increased 

navigational challenges and the need for more stringent deconfliction measures, potentially 

slowing the rollout and increasing the costs of Part 135 AAM/UAM transportation services. 

Therefore, understanding Class G airspace congestion levels is essential for metropolitan ranking 

and strategic planning in the deployment of Part 135 AAM/UAM transportation solutions. 

2.1.3.9 Existing Investment 

Existing investments in Part 135 AAM/UAM transportation service infrastructure and technology 

within a metropolitan area are critical indicators for assessing potential for Part 135 AAM/UAM 

transportation services integration and expansion. Cities that have already committed significant 

resources to the development of aviation-related infrastructure, such as vertiports, maintenance 

facilities, electricity power supply, air traffic management tools, operational principles and air 

traffic control technologies, are likely better prepared to support the complexities of Part 135 

AAM/UAM transportation service operations (FAA, 2023b; Schuh et al., 2021; Olivares et al., 

2022). Such investments not only demonstrate a proactive approach to embracing new mobility 

solutions but also indicate a readiness to integrate these systems into the existing transportation 

network. Moreover, prior investments can lead to quicker regulatory approvals, community 

acceptance, and faster implementation and scaling of services. For metropolitan ranking, areas 

with substantial existing investments in relevant technologies and facilities suggest a higher 

potential for successful Part 135 AAM/UAM transportation service deployment, as they already 

have both interest and financial means to use these types of vehicles. These regions are likely to 

attract further investments and partnerships, driving innovation and growth in advanced air 

mobility. This makes them prime candidates for early adoption and market leadership in the Part 

135 AAM/UAM transportation services sector. 

2.1.4 Existing Short-Haul Markets  

The existing short-haul market within metropolitan areas plays a vital role in determining the 

potential success and utility of Part 135 AAM/UAM transportation services, emphasizing the 

existing demand for quick, efficient transportation options for distances under 150 miles, a range 

well within the ideal parameters of Part 135 AAM/UAM transportation service operations. By 

assessing the volume and stability of these existing markets, one can predict where Part 135 

AAM/UAM transportation services could supplement or replace existing transportation modalities 

by offering a faster and more convenient alternative. 
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2.1.4.1 Airport Short-Haul Market Stability <150 miles 

The number of flight origins and destinations within 150 miles is a critical indicator of the demand 

for short-haul travel, which serves as a key market for Part 135 AAM/UAM transportation services 

(Olivares et al., 2022). This metric effectively captures existing demand for short-distance air 

travel, highlighting routes that Part 135 AAM/UAM transportation services could connect more 

efficiently. Metropolitan areas with a high volume of short-haul connections demonstrate a 

substantial need for rapid, convenient transportation options that bypass the complexities and 

delays often associated with traditional air and ground transportation. By focusing on such areas, 

Part 135 AAM/UAM transportation services can tap into an established market, providing faster 

direct flights that reduce travel times and enhance passenger convenience. This not only makes 

Part 135 AAM/UAM transportation services highly attractive to regular travelers utilizing these 

routes but also provides the case for economic investment in Part 135 AAM/UAM transportation 

services by directly addressing a clear, existing demand for improved short-distance travel options. 

2.1.5 Social Factors 

Social factors such as public acceptance, perceived safety, and concerns about noise and visual 

pollution can significantly influence the feasibility of implementing Part 135 AAM/UAM 

transportation services in metropolitan areas. Prior research indicates these elements reflect 

community members openness to and comfort with new technologies, which has the potential to 

accelerate or hinder adoption of Part 135 AAM/UAM transportation services (Goyal et al., 2021; 

Thomas, 2023; Haritos et al., 2023; Hill et al., 2023; Olivares et al., 2022; Reiche et al., 2018; 

Vascik et al., 2017). 

2.1.5.1 Social Acceptance 

The level of social acceptance towards new technologies significantly influences the feasibility 

and rapid integration of Part 135 AAM/UAM transportation services into existing urban 

transportation systems. Metropolitan areas that exhibit higher degrees of social acceptance towards 

Part 135 AAM/UAM transportation services are likely to experience smoother implementation 

and more rapid adoption rates (Goyal et al., 2021; Thomas, 2023; Olivares et al., 2022; Reiche et 

al., 2018; Thipphavong et al., 2018; Vascik et al., 2017). This social acceptance can stem from a 

variety of sources, such as a community’s openness to innovation, environmental 

conscientiousness, or history of embracing new transportation solutions. Furthermore, positive 

public perception of Part 135 AAM/UAM transportation services can lead to supportive local 

policies, facilitating necessary infrastructure developments and regulatory approvals (Dietrich, 

2020; Wisk, 2021). For metropolitan ranking, assessing social acceptance helps identify regions 

where Part 135 AAM/UAM transportation services are more likely success, ensuring investments 

are placed in strategic markets with the public is prepared to support and utilize these solutions. 

The ASSURE A41 team conducted a stated preference survey to investigate public perception of 

AAM/UAM, as well as how various factors might influence public willingness to utilize such 

services (Haritos et al., 2023). The ASSURE A41 survey covered a wide range of demographic 

groups, assessing respondents’ comfort flying in an autonomous aircraft, their price sensitivity, 

and the potential impact of the COVID-19 pandemic on their travel behavior. Results indicated a 

general interest in Part 135 AAM/UAM transportation services; however, respondent comfort 

varied significantly based upon how the AAM/UAM aircraft would be piloted (i.e., pilot operator, 

semi-autonomous, autonomous) and the respondent’s prior experience with air travel. 
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Furthermore, results highlighted how individual-level factors (e.g., household income, primary 

modes of transportation, average daily commute) shape public attitudes towards Part 135 

AAM/UAM transportation service adoption. Overall, the ASSURE A41 results suggest targeted 

education and a gradual integration of autonomous technologies may be necessary to build public 

trust and encourage broader social acceptance of Part 135 AAM/UAM transportation services. 

2.1.5.2 Perceived Safety 

Public perceptions of safety regarding Part 135 AAM/UAM transportation technologies can 

greatly influence individual willingness to support and utilize Part 135 AAM/UAM transportation 

services (Fu et al., 2019; Thomas, 2023; Haritos et al., 2023; Hill et al., 2020; Kloss et al., 2021). 

According to the European Union Aviation Safety Agency (EASA), most pedestrians were 

reluctant to accept automated UAM services due to the perceived risks such aircraft posed to their 

individual safety (EASA, 2021). Metropolitan areas with more favorable perceptions pertaining to 

the safety of Part 135 AAM/UAM transportation services are more likely to exhibit faster 

integration and expansion. These perceptions can be enhanced through transparent safety records, 

effective communication of safety protocols, and visible endorsements from trusted regulatory 

bodies (Hasan, 2019). Furthermore, demonstrations of successful emergency response strategies 

and robust safety features in Part 135 AAM/UAM transportation technologies can further reassure 

the public. For metropolitan ranking, assessing public perceptions regarding the safety of Part 135 

AAM/UAM transportation services gauges public readiness to embrace and utilize such services. 

Greater perceptions of safety can accelerate the adoption process by facilitating smoother 

regulatory approvals and public cooperation, thereby positioning metropolitan areas with higher 

perceptions of safety as ideal candidates for Part 135 AAM/UAM transportation service 

operations. 

2.1.5.3 Noise and Visual Pollution 

The impact of Part 135 AAM/UAM transportation services on the urban environment, particularly 

in terms of noise generated by aircraft and the visual intrusion of additional flight paths and 

infrastructure, can significantly influence public acceptance (EASA, 2021; Thomas, 2023; Haritos 

et al., 2023; Panchal & Egmond, 2023; Reiche et al., 2018). Metropolitan areas that are sensitive 

to noise disturbances and visual changes, especially densely populated cities with stringent 

environmental regulations, might face more challenges in adopting Part 135 AAM/UAM 

transportation services (Hasan, 2019; Thipphavong et al., 2018; Wisk, 2021). Conversely, regions 

that can mitigate these impacts through technology - such as quieter eVTOL aircraft and well-

integrated vertiport designs - have a higher potential for successful Part 135 AAM/UAM 

transportation service integration. For metropolitan ranking, assessing the existing tolerance and 

regulatory framework regarding noise and visual pollution is essential. This assessment helps 

identify areas where Part 135 AAM/UAM transportation services could be deployed with minimal 

environmental disruption, ensuring a smoother introduction of services and fostering community 

support by aligning with local environmental values. 

The potential of Part 135 AAM/UAM transportation services to transform urban and regional 

transportation is immense, presenting innovative solutions to the escalating challenges of 

congestion, pollution, and inefficiencies that accompany global urbanization. This literature 

review systematically explored methodologies for ranking metropolitan areas based on potential 
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for implementation and expansion of Part 135 AAM/UAM transportation services, underlining the 

necessity of comprehensive planning to mitigate the complexities of modern urban transport. 

In synthesizing insights from various models and assessing factors which influence the viability 

of Part 135 AAM/UAM transportation services across different urban and regional contexts, this 

review emphasizes the importance of urban structure, economic scale, congestion, travel time, 

market readiness, existing short-haul markets, and social acceptance. These factors are important 

in determining sites suitable for Part 135 AAM/UAM transportation service implementation and 

expansion. 

Subsequent ASSURE A66 efforts necessitate the formal adoption and execution of an appropriate 

methodology to rank US MSAs based on potential for implementation and expansion of Part 135 

AAM/UAM transportation services. The A66 research team chose to adopt the methodologies 

employed by the ASSURE A36 team. The A36 approach, which combines a series of urban and 

regional metrics to rank metropolitan areas, has proven both robust and insightful. It also allows 

for the seamless incorporation of new factors into the model, enhancing its adaptability. The 

psychometric validation aspect further ensures the reliability and accuracy of the metrics used in 

assessing site suitability, making this methodology a comprehensive tool for site suitability 

analysis. Integrating these established techniques into the ASSURE A66 project alongside an 

expanded set of variables should enhance predictive accuracy, thereby optimizing efforts to 

identify the most promising regions for the introduction and expansion of AAM and UAM 

services. 

The A66 research team incorporated the comprehensive set of factors outlined within this literature 

review; however, variables pertaining to social factors were excluded from the ranking 

methodology due to the lack of data available at the national level. Assessments of social factors 

which influence the support for, and utilization of Part 135 AAM/UAM transportation services are 

often derived from local stated preference or omnibus surveys and such data collection efforts are 

beyond the scope of the ASSURE A66 project. However, inclusion of the expanded set of variables 

pertaining to the remaining factors (i.e., urban structure; economic scale; congestion and travel 

time; market readiness; existing short-haul markets) were selected for inclusion to ensure the 

strategic ranking of US MSAs were thorough and reflective of the multifaceted dynamics which 

influence Part 135 AAM/UAM transportation service implementation, utilization, and expansion. 

2.2 Expansion of A36 Metropolitan Ranking Methodology 

Based on the pervious literature review, the Simple Multi-Attribute Rating Technique (SMART), 

was applied for ranking metropolitan areas with potential for AAM/UAM transportation 

integration. The metropolitan areas were evaluated at the CSA level, resulting in a CSA suitability 

ranking for AAM/UAM. 

The primary objective of this section was to update the data sources from Team A36, reorganize 

the metropolitan areas (shifting from MSA to CSA), and add two additional variables to SMART: 

electrical consumption and local incentives. The final ranking results served as a reference for the 

targeted CSAs picked up for the following section.  

2.2.1 Data Collection 

One of the objectives of this section was to update all relevant data based on the ASSURE A36 

team’s work. Additionally, the expanded methodology included two new variables. Details on 
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where to download the data can be found in Appendix A. The list of variables is shown in Table 

1.  

Table 1. CSA Suitability Analysis Variables for AAM/UAM. 

Variable Variable Description 

Population Density Average population per square mile 

Polycentrism Number of employment-subcenters 

Fortune 1,000 Presence Number of Fortune 1000 company headquarters 

Gross Regional Product Gross domestic product of CSA per capita 

Average Time to Work Average one-way commute time, minutes 

Travel Time Index Index of peak period to free-flow conditions 

Airport to Central Business 
District Drive Time 

Estimated driving time in free-flow conditions from commercial 
airports to central business district, weighted by the number of 

commercial aircraft operations 

Heliports Per Capita Number of heliports per capita 

Airports Per Capita Number of airports per capita 

Class B Airspace Presence (or not) of Class B Airspace in CSA (binary) 

Class G Airspace Congestion Average total hours per square mile in Class G airspace 

Electricity Consumption Number of electricity consumption per capita 

Local Incentive Number of local government incentive  

Existing Investment UAM Launch City (1.0) or Headquarters City (0.5) 

Airport Short-Haul Market 
Stability 

Count of flight origins and destinations within CSA for distances 
shorter than 150 miles 

 

2.2.2 Input Datasets 

The input dataset included the following key data sources:  

• List of populations in CSAs. 

• List of census tract land area in USA. 

• List locations of polycentrism in USA. 

• List locations of Fortune 1,000 headquarters in USA. 

• Average time to work in CSAs. 

• Travel time index in each city of USA. 

• Average airport to Central Business District (CBD) drive time. 

• List locations of heliport and airport in USA. 

• List UAM launch cities and headquarters cities in CSAs. 

• Electricity consumption in CSAs. 

• The local government incentive for AAM/UAM company. 

• The data set from A36 team.  

• The short-haul flights in CSAs. 

The details of those datasets are introduced in Appendix B. 
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Table 2. The Weight of Each Variable and Variable Category 

Category 
Category 

Weight Total 
Variable 

Variable 
Weight 

Urban Structure 35 
Population Density 15.0 

Polycentrism 20.0 

Economic Scale 15 
Fortune 1000 Presence 5.0 

GDP per Capita 10.0 

Congestion 7.5 

Average Time to Work 2.5 

Travel Time Index 2.5 

Airport to CBD Drive Time 2.5 

Readiness 32.5 

Heliports per Capita 5.0 

Airports per Capita 5.0 

Class B Airspace 2.5 

Class G Airspace Congestion 5.0 

Electricity Consumption 5.0 

Local Incentive 5.0 

Public & Private Investment 5.0 

Existing Demand 10 Airport Short Haul OD <150 Miles 10.0 

 

2.2.3 Python Scripts 

One Python script for this section is saved in the code folder, which serves two purposes: 

• Data processing: Processes the downloaded data and outputs the processed datasets for the 

Terminal Area Forecast – Modernized 2 (TAF-M2) model. 

• Ranking model: Applies the SMART to ranking the site suitability for AAM/UAM in each 

CSA. The weight of each variable is shown in Table 2. 

2.2.4 Top 20 CSA Suitability Ranking  

After running the Python script, the site suitability score was generated for each CSA. The weight 

set in Table 2 represents a blended emphasis on urban structure and readiness categories (with a 

higher weight for these two categories), referred to as the base scenario. Several additional 

scenarios emphasize different categories. The weight sets for these scenarios are discussed in 

Appendix C. The top 20 CSAs for the base scenario are shown in Table 3, while the results for the 

infrastructure readiness scenario are shown in Table 4.  
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Table 3. Most Suitable CSAs for AAM/UAM Services- Base Scenario 

Rank CSA Score 

1 New York-Newark, NY-NJ-CT-PA 78.53 

2 Los Angeles-Long Beach, CA 69.24 

3 San Jose-San Francisco-Oakland, CA 68.07 

4 Miami-Port St. Lucie-Fort Lauderdale, FL 43.9 

5 Chicago-Naperville, IL-IN-WI 40.79 

6 Boston-Worcester-Providence, MA-RI-NH 38.38 

7 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 36.59 

8 Seattle-Tacoma, WA 35.09 

9 Detroit-Warren-Ann Arbor, MI 33.83 

10 Atlanta--Athens-Clarke County--Sandy Springs, GA-AL 32.28 

11 Houston-Pasadena, TX 31.15 

12 Dallas-Fort Worth, TX-OK 30.22 

13 Charlotte-Concord, NC-SC 27.56 

14 Denver-Aurora-Greeley, CO 26.78 

15 Sacramento-Roseville, CA 26.18 

16 New Haven-Hartford-Waterbury, CT 25.51 

17 Philadelphia-Reading-Camden, PA-NJ-DE-MD 25.24 

18 Portland-Vancouver-Salem, OR-WA 24.63 

19 Nashville-Davidson--Murfreesboro, TN 24.36 

20 Raleigh-Durham-Cary, NC 24.27 

 

 

Table 4. Most Suitable CSAs for AAM/UAM Services- Infrastructure Readiness Scenario 

Rank CSA Score 

Rank Change from Base 

Scenario 

1 New York-Newark, NY-NJ-CT-PA 79.32 0 

3 San Jose-San Francisco-Oakland, CA 75.30 +1 

2 Los Angeles-Long Beach, CA 67.73 -1 

4 Miami-Port St. Lucie-Fort Lauderdale, FL 49.72 0 

6 Boston-Worcester-Providence, MA-RI-NH 42.27 +1 

5 Chicago-Naperville, IL-IN-WI 41.90 -1 

7 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 37.87 0 

8 Seattle-Tacoma, WA 36.51 0 

19 Nashville-Davidson--Murfreesboro, TN 35.49 +10 

11 Houston-Pasadena, TX 35.04 +1 

15 Sacramento-Roseville, CA 34.46 +4 

14 Denver-Aurora-Greeley, CO 33.63 +2 

12 Dallas-Fort Worth, TX-OK 33.58 -1 

26 Dayton-Springfield-Kettering, OH 33.35 +12 

10 Atlanta--Athens-Clarke County--Sandy Springs, GA-AL 32.88 -5 

16 New Haven-Hartford-Waterbury, CT 32.54 0 

20 Raleigh-Durham-Cary, NC 31.96 +3 
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THE TERMINAL AREA FORECAST – MODERNIZED 2 (TAF-M2) 

MODEL FRAMEWORK   

Urban transportation is projected to experience a transformative shift with the introduction of 

AAM and UAM services, as these technologies have the potential to shift how people travel within 

U.S. CSAs by providing transportation options that differ from those currently available. To 

project the extent of these changes, the TAF-M2 Model Framework seeks to assess potential shifts 

in Part 121 enplanements among airports within select U.S. CSA that may result from the 

integration of AAM/UAM transportation services into existing urban transportation systems. 

While the existing TAF-M Methodology is first based on the MSA level and then disaggregates to 

the airport-level, the proposed TAF-M2 methodology is based on the CSA level to account for 

instances in which multiple MSAs are in close proximity to each other and then disaggregate to 

the airport-level. This section outlines the three-phase approach utilized to achieve this goal. 

Phase I: TAF-M Part 121 Enplanement Forecasts: Utilizing the existing TAF-M Methodology, 25-

Year Forecasts of annual Part 121 enplanement estimates were constructed for each selected U.S. 

MSA, as well as for each airport within each selected U.S. MSA. These forecasts served as a 

baseline of annual Part 121 enplanement estimates through 2050 based on the assumption that 

AAM/UAM airport access services will not be introduced within the selected U.S. MSA during 

the forecast period. 

Phase II: AAM/UAM Transportation Integration Forecasts: Next, the A66 AAM/UAM 

Transportation Integration Forecast Methodology was applied to determine the extent of potential 

annual Part 121 enplanement shifts between airports within each selected U.S. metropolitan area 

due to the introduction of AAM/UAM airport access services into respective metropolitan urban 

transportation systems. To this end, a nested logit model was utilized to estimate the appropriate 

weights of annual Part 121 enplanement shifts for each airport within each selected U.S. CSA 

based on factors which influence discrete passenger choices pertaining to: a) airport access mode; 

and b) airport preference. 

Phase III: TAF-M2 Part 121 Enplanement Forecasts: Finally, TAF-M2 25-Year Forecasts of 

annual Part 121 enplanement estimates were constructed for each airport within each selected U.S. 

CSA by utilizing a forward induction approach. Annual airport-level weights developed through 

the A66 AAM/UAM Transportation Integration Forecast Methodology were iteratively applied to 

annual MSA-level Part 121 enplanement estimates developed through the TAF-M Methodology. 

The TAF-M2 forecasts serve as a counterfactual of annual Part 121 enplanement estimates through 

2050 based on the assumption AAM/UAM airport access services are introduced in the immediate 

future within the selected U.S. CSAs. 

3.1 Phase I: TAF-M Part 121 Enplanement Forecasts 

This section provides a brief overview of the existing TAF-M Methodology utilized to forecast 

Part 121 enplanements. For the sake of brevity, this section limits its discussion to the simplified 

TAF-M Origin-Destination (O&D) passenger forecast model presented in the TAF-M 

Methodology. For more information regarding the coefficient estimation and the dynamic log-log 

approximation process, please visit 

https://www.faa.gov/sites/faa.gov/files/data_research/aviation/taf-m_methodology.pdf. 

https://www.faa.gov/sites/faa.gov/files/data_research/aviation/taf-m_methodology.pdf
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3.1.1 TAF-M Background 

The Terminal Area Forecast (TAF) is the official Federal Aviation Administration (FAA) forecast 

of aviation activity for U.S. airports, consisting of TAF-M (Modernized) and TAF-L (Legacy) 

forecasts. The TAF-M covers forecasts of Part 121 enplanements and commercial operations for 

airports with over 100,000 enplanements per year, while the TAF-L covers forecasts for all other 

U.S. airports. The TAF-M model represents an enhancement to TAF-L by generating segment-

level enplanement and commercial operation forecasts. The TAF-M origin and destination model 

provides insight regarding the flow of passengers from origin point i to destination point j rather 

than considering passenger counts at a static specific location. The O&D passenger demand 

forecast at the airport-pair level involves two steps: 1) coefficient estimation; and 2) forecast 

generation with a dynamic log-log approximation process. 

3.1.2 Mathematical Framework 

To forecast future O&D passenger counts for U.S. MSA, as well as each airport within U.S. MSA, 

the TAF-M methodology was applied utilizing the following equation (FAA, 2023): 

Equation 1A. 

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑖−𝑗,𝑡+1 = 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑖−𝑗,𝑡 ∗ (1 + 𝛽1 ∗ (
𝐼𝑛𝑐𝑜𝑚𝑒 𝑂𝑟𝑖𝑔𝑖𝑛𝑖,𝑡+1

𝐼𝑛𝑐𝑜𝑚𝑒 𝑂𝑟𝑖𝑔𝑖𝑛𝑖,𝑡
− 1) + 𝛽2 ∗

(
𝐼𝑛𝑐𝑜𝑚𝑒 𝐷𝑒𝑠𝑡𝑗,𝑡+1

𝐼𝑛𝑐𝑜𝑚𝑒 𝐷𝑒𝑠𝑡𝑗,𝑡
− 1)) 

Where: 

• 𝑖 and 𝑗 indices represent the origin airport and destination airport. 

• 𝑡 represents quarter. 

• 𝛽1 and 𝛽2 are Origin-Income elasticity and Destination-Income elasticity, where the value 

is positive and stand for the impact of income to the passenger number. 

This framework follows assumptions outlined by the original TAF-M methodology 

(https://www.faa.gov/media/76666). After the forecasted O&D passengers were predicted, it was 

scaled to T100 segment (Since O&D only captures the 10th coupon’s route, it is to be matched by 

routes (100%) segment followed from T100-Segment). Then the scaled forecasted O&D 

passengers from each MSA was then assigned to a route (i.e., airport-to-airport). This was 

accomplished using an assignment algorithm where the number of scaled O&D passengers was 

distributed across various routes based on historical information available for the same quarter of 

the previous year (FAA, 2023). The TAF-M origin passenger count for each airport within selected 

U.S. MSAs was used in conjunction with the A66 AAM/UAM Integration Forecast Methodology 

(see Phase II) to estimate potential shifts in passenger count for each airport within selected U.S. 

CSA. 

3.2 Phase II: AAM/UAM Transportation Integration Forecasts 

This section provides an overview of the A66 AAM/UAM Transportation Integration Forecast 

Methodology, including a brief overview of modeling decisions, theoretical assumptions, 

mathematical frameworks, and limitations/future directions. Since there was a lack of ground truth 

data to fit the proposed methodology, the constrained optimization method detailed in Section 

3.3.4.1 was applied to obtain the parameter values in the proposed methodology. 

https://www.faa.gov/media/76666
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3.2.1 Methodological Overview 

To understand the implications of the introduction of Part 135 AAM/UAM commercial services, 

assumptions regarding vertiport placement must first be made to determine factors which influence 

the utility (e.g., time and cost) of utilizing Part 135 AAM/UAM commercial services. Based on 

discussions with the FAA, as well as internal discussions among the performers, the centroid of 

each census tract within a CSA was used as a proxy for potential vertiport locations which will 

facilitate Part 135 AAM/UAM commercial services. Additionally, there was an assumption that 

not all passengers would adopt Part 135 AAM/UAM commercial transportation services at the 

same time, and the ratio of passengers utilizing these services would be updated annually within 

the model. For example, in 2024, the AAM/UAM utility will be multiplied by 0, indicating that 

no passenger will utilize Part 135 AAM/UAM commercial transportation services. This ratio will 

increase each year and in 2050, the Part 135 AAM/UAM commercial transportation services utility 

will be used directly, meaning all passengers will be assumed to potentially adopt Part 135 

AAM/UAM commercial transportation services.  

Next, a nested logit choice model (Pels et al., 2003; Thrane, 2015; Zhao et al., 2020) was utilized 

to understand passenger behaviors pertaining to transportation access choice and airport choice. 

Prior research has consistently demonstrated the utility of logit models in estimating probabilities 

of selecting specific ground transportation access modes (Hess et al., 2011; Pasha et al., 2020), as 

well as specific airports (Basar & Bhat, 2004; Harvey, 1987; Hess & Polak, 2006a; Pels et al., 

2003; Skinner, 1976; Windle & Dresner, 1995), based on the characteristics of options within the 

choice set. This behavioral perspective is crucial to understand potential shifts in passenger 

preferences and predict the passenger distribution across airports and transportation access modes 

after the introduction of Part 135 AAM/UAM commercial services.  

Though a variety of logit-based models (i.e., multinomial logit, nested logit, cross-nested logit, 

probabilistic choice set multinomial logit) have been utilized to assess airport choice, Pels et al. 

(2003) has noted nested logit choice models are best used to explain joint airport-transportation 

access mode decisions. The nested logit choice model assumes passengers make decisions based 

upon which choice provides the maximum utility, a measure of the satisfaction or benefit derived 

from a particular choice modeled as a function of choice option attributes. As such, the nested logit 

choice model was applied to estimate the passenger weight at each airport within each selected 

U.S. CSA through 2050. 

To achieve the A66 research objectives, the following steps were implemented: 

a) Estimation of Transportation Mode and Airport Utilities 

b) Estimation of Passenger Choice Probabilities 

c) Estimation of Passenger Counts 

d) Estimation of Passenger Weights for Each Airport 

Due to a lack of available field data regarding individual-level decisions pertaining to airport 

choice and ground transportation access mode choice, as well as a lack of available field data 

pertaining to passenger uptake of Part 135 AAM/UAM commercial services, a constrained 

optimization process was utilized to calculate model constants and coefficients for selected 

variables. Regarding model specification, variable selection was guided by extant research on 

ground transportation mode choice selection and airport selection. To this end, transportation mode 

utility was specified based upon travel time and travel cost, while airport utility was specified 
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based upon average airfare, flight frequency, average transfers, and on-time flight performance. 

Travel time estimates for Part 135 AAM/UAM transportation were calculated as the linear distance 

from the centroid of each census tract to each airport within a selected U.S. CSA multiplied by the 

average speed of AAM/UAM vehicles, while travel time estimates for ground transportation 

modes were derived from Apple Maps. Travel cost estimates for Part 135 AAM/UAM 

transportation were derived from UAM Geomatics, while travel cost estimates for ground 

transportation modes were derived based on calculations of base cost and mileage. For additional 

information pertaining to data sources and prior research regarding these variables, see Appendix 

D. 

The passenger weights for each airport were subsequently utilized as inputs for developing the 

TAF-M2 Part 121 enplanement estimates in Phase III. 

3.2.2 Assumptions 

Prior to engaging in analytical procedures, the following assumptions must be detailed for this 

research framework: 

a) The centroid of each census tract will be utilized as a proxy for a potential vertiport 

location. 

b) Vertiports are assumed to be capable of handling all Part 135 AAM/UAM commercial 

transportation services during the prediction period.  

c) The number of passengers who may potentially adopt Part 135 AAM/UAM 

commercial transportation services will increase by up to 2% annually. For analytical 

purposes, the number of passengers assumed to adopt Part 135 AAM/UAM 

commercial transportation services in 2024 will be 0%. 

d) Each airport is subject to a 10% annual limit on enplanement changes. 

e) Each passenger will be assumed to travel from the centroid of their respective census 

tract to each metropolitan airport by one of four transportation modes: public 

transportation (i.e., bus, subway), taxi/Uber/Lyft, personal vehicle, or AAM/UAM. The 

travel time and travel cost will differ for each of the four transportation modes. 

f) Each passenger is assumed to be rational, making their transportation mode choice 

solely based on travel time and travel cost. In other words, each passenger is assumed 

to select their transportation mode based on which has the maximum utility. 

g) Each passenger within a census tract is assumed to make the choice regarding 

transportation mode and airport selection based on the nested logit choice model 

probability.  

h) The transportation utility model (see Equation 1B below) and the airport utility model 

(see Equation 2B below) will have fixed coefficients across each CSA, as well as across 

time. 

i) The emergence of Part 135 AAM/UAM commercial services will not impact on the 

coefficients of the nested logit choice model. 

j) The ratio of passengers-to-population is based on household income for each census 

tract within a single CSA. 

k) The 𝜇𝑑 in Equation 3B (see below) is fixed at the airport-level. 

l) The model only considers passengers departing from each census tract to the airport, 

assuming the passenger will make the same transportation mode and airport choices for 

their return flights.  
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3.2.3 Mathematical Framework 

The mathematical framework of the A66 AAM/UAM Transportation Integration Forecast 

Methodology is as follows: 

3.2.3.1 Estimation of Transportation Mode and Airport Utilities 

The utility of transportation mode 𝑈𝑎 and utility of airport 𝑈𝑑 from an origin census tract to a 

destination airport d with transportation mode a was assessed as a linear function of the following 

attributes: 

Equation 1B. Utility of Transportation Mode 

𝑈𝑎 = 𝛽𝑎 + 𝛽𝑇𝑖𝑚𝑒𝑇𝑖𝑚𝑒𝑎,𝑑 + 𝛽𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝑎,𝑑 

Equation 2B. Utility of Airport 

𝑈𝑑 = 𝛽𝑑 + 𝛽𝐹𝑎𝑟𝑒𝐹𝑎𝑟𝑒𝑑 + 𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑑 + 𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑑 + 𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑑 

where: 

• 𝛽𝑎 and 𝛽𝑑 are the transportation mode-specific constant and airport-specific constant. 

• 𝛽𝑇𝑖𝑚𝑒, 𝛽𝐶𝑜𝑠𝑡 , 𝛽𝐹𝑎𝑟𝑒 , 𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠, 𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , and 𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚 are coefficients for the variables 

assessing travel time, cost ticket fare, flights, transfer and airport on-time performance 

respectively. 

• 𝑇𝑖𝑚𝑒𝑎,𝑑 and 𝐶𝑜𝑠𝑡𝑎,𝑑 are the travel time and cost associated with transportation mode 

𝑎 for airport 𝑑 in census tract location. 

• 𝐹𝑎𝑟𝑒𝑑, 𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑑 , 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑑 and 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑑 are average air ticket fare, average 

number of flights, average number of transfers and average time delay in airport 𝑑. 

• The coefficients in this section will be calculated by the constrained optimization 

process detailed in Section 3.3.4.1.  

• Equation 1B is assessed at the census-tract level, while Equation 2B is assessed at the 

airport-level. 

3.2.3.2 Estimation of Passenger Choice Probabilities 

The softmax function, which is typically used to transform utilities into probabilities (Ben-Akiva 

et al., 1985; Bouchard et al., 2007; Pels et al., 2003), was utilized to convert the utility of 

transportation mode and the utility of airport into probabilities for analysis. These probabilities 

were calculated as follows: 

Equation 3B. Probability of Choosing Transportation Mode Given Specific Airport  

𝑃𝑟𝑎|𝑑 =  
𝑒

[
𝛽𝑎+𝛽𝑇𝑖𝑚𝑒𝑇𝑖𝑚𝑒𝑎,𝑑+𝛽𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝑎,𝑑

𝜇𝑑
]

Σ𝑎∈A(𝑑)𝑒
[
𝛽𝑎+𝛽𝑇𝑖𝑚𝑒𝑇𝑖𝑚𝑒𝑎,𝑑+𝛽𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝑎,𝑑

𝜇𝑑
]
 

Equation 4B. Probability of Choosing Specific Airport 

𝑃𝑟𝑑 =  
𝑒[𝛽𝑑+𝛽𝐹𝑎𝑟𝑒𝐹𝑎𝑟𝑒𝑑+𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑑+𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑑+𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑑+𝑉1]

Σ𝑑∈D𝑒[𝛽𝑑+𝛽𝐹𝑎𝑟𝑒𝐹𝑎𝑟𝑒𝑑+𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝐹𝑙𝑖𝑔ℎ𝑡𝑠𝑑+𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑑+𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑑+𝑉1]
 

 



26 

 

Equation 5B. Maximum Expected Utility 

𝑉1 =  𝜇𝑑ln {∑ 𝑒
[
𝛽𝑎+𝛽𝑇𝑖𝑚𝑒𝑇𝑖𝑚𝑒𝑎+𝛽𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝑎

𝜇𝑑
]
} 

Where: 

• 𝑃𝑟𝑎|𝑑 is the probability of choosing transportation mode 𝑎 given airport 𝑑. 

• 𝑃𝑟𝑑 is the probability of choosing airport 𝑑. 

• 𝐴(𝑑) is transportation mode 𝑎 in airport 𝑑. 

• 𝐷 is all airports within the CSA. 

• 𝑒 is the exponential function. 

• 𝜇𝑑 is an inclusive value parameter (heterogeneity parameter) in airport 𝑑, where 
alternatives within a nest become closer substitutes if 𝜇𝑑 gets closer to 0, and the model 

reduces to the multinomial logit model when 𝜇𝑑 = 1. It will be calculated using the 

constrained optimization process detailed in Section 3.3.4.1. 

• Equations 3B – 5B are assessed at the airport-level using census tract estimates. 

3.2.3.3 Estimation of Passenger Counts 

After the nested logit choice model was implemented to determine transportation mode and airport 

probabilities, estimates of passengers from each census tract within a U.S. CSA were assessed 

using the assumption each passenger within the census tract would make the same travel choice 

(i.e., the airport with the highest probability of selection for a census tract would receive all 

passengers from the census tract). The total passenger estimate for all census tracts within a 

metropolitan area were assessed as follows: 

Equation 6B. Estimate of Passengers Choosing Specific Airport 

𝑃𝐶𝑜𝑢𝑛𝑡_𝑑 = 𝛼 ∗ ∑ 𝛼𝑐𝑃𝑟𝑑 ∗ 𝑃𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡

𝐶𝑒𝑛𝑠𝑢𝑠 𝑇𝑟𝑎𝑐𝑡

 

Where:  

• 𝑃𝐶𝑜𝑢𝑛𝑡_𝑑 is passenger count for airport 𝑑. 

• 𝑃𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡 is census tract population. 

• 𝛼𝑐 is the median household income ratio for each census tract (𝛼𝑐 =
𝑀𝑒𝑑𝑖𝑎𝑛 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑒𝑛𝑠𝑢𝑠 𝑇𝑟𝑎𝑐𝑡

𝑀𝑒𝑑𝑖𝑎𝑛 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑆𝐴
   ) 

•  𝛼 is the passenger ratio within the CSA ( 𝛼 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑆𝐴

∑ α𝑐𝑃𝑐𝑒𝑛𝑠𝑢𝑠 𝑡𝑟𝑎𝑐𝑡𝐶𝑒𝑛𝑠𝑢𝑠 𝑇𝑟𝑎𝑐𝑡
  ). 

• Equation 6B is assessed at the airport-level using census tract estimates. 

3.2.3.4 Estimation of Airport Weights 

Finally, after assessing the passenger count for each airport, the passenger weight of each airport 

within a CSA was assessed as follows: 

Equation 7B. Estimate of Passenger Flow Weight for Specific Airport 

𝑊𝑑 =
𝑃𝐶𝑜𝑢𝑛𝑡_𝑑

∑ 𝑃𝐶𝑜𝑢𝑛𝑡_𝑑𝐷
 

Where:  

• 𝑊𝑑 is the passenger weight of airport. 
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• Equation 7B is estimated at the airport-level. 

3.2.4 Constrained Optimization 

To calculate airport passenger weights using a nested logit choice mode, the coefficients for 

Equations 1B, 2B, and 3B (i.e., 𝛽𝑇𝑖𝑚𝑒, 𝛽𝐶𝑜𝑠𝑡, 𝛽𝐹𝑎𝑟𝑒, 𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠, 𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , 𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚, 𝜇𝑑) need to be 

estimated. Due to a lack of field data regarding transportation choice and airport choice, the 

traditional statistical model fitting process could not be directly applied to this research (Pels et 

al., 2003; Zhao et al., 2020). As such, a constrained optimization process was proposed to estimate 

these coefficients.  

Constrained optimization is a mathematical technique used to find the optimal solution to a 

problem subject to certain restrictions or constraints. This can be used to minimize or maximize 

the objective function while adhering to the constraints. In this research, the objective function 

was to minimize the difference between the TAF-M generated passenger count and the calculated 

passenger count for each airport. The constraints were the calculated probability of each 

transportation mode equal to the observed percentages of each transportation mode arriving at an 

airport which were sometimes published by local airport authorities, which were published on the 

airport official website (i.e. LAX). These reports present survey results detailing percentages of 

passengers which utilized various ground transportation modes to access a specific airport. 

Throughout the project, the A66 research team identified reports containing the observed 

percentages for three airports in New York, NY as well as the LAX airport in Los Angelos, CA. 

The mathematical formula utilized was: 

Equation 8B. Objective Function for Constrained Optimization: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆(𝛽, 𝜇𝑑) = ∑ (𝑃𝐶𝑜𝑢𝑛𝑡_𝑡 − 𝑃𝐶𝑜𝑢𝑛𝑡(𝛽, 𝜇𝑑))
2

𝑎𝑖𝑟𝑝𝑜𝑟𝑡
 

Subject to: 

𝑃𝑎|𝑑 =  𝑃𝑎|𝑑(𝛽, 𝜇𝑑) 

Where:        

• 𝑃𝐶𝑜𝑢𝑛𝑡_𝑡 is the TAF-M generated passenger count for airport 𝑎. 

• 𝑃𝐶𝑜𝑢𝑛𝑡(𝛽, 𝜇𝑛) is the calculated passenger count for airport 𝑎. 

• 𝑃𝑎|𝑑 is the observed percentage of transportation mode 𝑎 for airport 𝑑. 

• 𝑃𝑎|𝑑 (𝛽, 𝜇𝑑) is the calculated probability of transportation mode 𝑎 for airport 𝑑. 

By applying constrained optimization algorithm, the coefficients 𝛽𝑇𝑖𝑚𝑒, 𝛽𝐶𝑜𝑠𝑡,  𝛽𝐹𝑎𝑟𝑒 , 𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠,

𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , 𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚 and 𝜇𝑑 were estimated. Accordingly, the passenger flow weight of passenger 

counts for each airport within a metropolitan area could be calculated. As the coefficients were 

assumed to not change when Part 135 AAM/UAM commercial services are introduced, by 

applying transportation mode utility function and airport utility function for Part 135 AAM/UAM 

services, the passenger count shifts after Part 135 AAM/UAM services launch could also be 

derived. The results of this analysis provided valuable insights into the potential impact of Part 

135 AAM/UAM commercial services on the passenger distribution among metropolitan airports. 
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3.3 Phase III: TAF-M2 Part 121 Enplanement Forecasts  

This section provides an overview of the TAF-M2 Methodology, which utilized forward induction 

to iteratively apply the airport weights developed through the A66 AAM/UAM Transportation 

Integration Forecast Methodology (Phase II) to the 25-Year TAF-M Part 121 enplanement forecast 

passenger counts (Phase I) to produce a new 25-Year TAF-M2 Part 121 enplanement forecast. 

3.3.1 Methodological Overview 

Upon completing Phase I and Phase II, TAF-M2 Part 121 enplanement estimates were developed 

using forward induction to iteratively apply the airport-level passenger weights developed through 

the A66 AAM/UAM Transportation Integration Forecast Methodology (Phase II) to the MSA-

level TAF-M passenger count estimates (Phase I) through 2050.  

The forward induction approach, derived from fundamental concepts in game theory, allows for 

inferences regarding passenger behavior based on the assumption passengers will make rational 

choices regarding future behavior similar to their observed historical decisions (Catonini & Penta, 

2022; Pearce, 1984; Perea, 2010). The rationality assumption of the forward induction approach 

implies passengers make decisions based upon which option provides the maximum utility, similar 

to the assumptions of discrete choice modelling (e.g., nested logit choice models) (Perea, 2010). 

Relative to the backward induction approach which ignores past behavior, the forward induction 

approach provides a richer strategic framework for decision making by incorporating the 

theoretical assumption that past behavior can signal future behavior, allowing for more nuanced 

predictions (Perea, 2010). Relative to the backward induction approach, which is most effective in 

scenarios of complete and perfect information, the forward induction approach is more adaptable 

to scenarios involving incomplete and imperfect information (i.e., the forward induction approach 

is more flexible since it can incorporate additional information as it becomes available) (Perea, 

2010).  

As such, the forward induction approach was more suitable for use in the TAF-M2 Methodology 

for the following reasons: 

• The TAF-M currently utilizes the forward induction approach to make predictions of 

Part 121 enplanements based on historical data. 

• The A66 AAM/UAM Transportation Integration Forecast Methodology utilizes 

historical data to make predictions related to passenger choices regarding transportation 

access mode and airport preference. The historical data provides the total number of 

passengers, average airfare at each airport, and census tract travel time and cost to the 

airport in each CSA for the target quarter, which would be used in the proposed TAF-

M2 methodology for this project.  

• The requisite assumption of the backward induction approach that future passengers 

would make rational decisions based on complete and perfect information is untenable. 

In reality, passengers often make decisions based upon incomplete information 

regarding all possible choice options. 

• The backward induction approach requires the assumption of fixed end states (i.e., 

fixed outcomes) (Alós-Ferrer & Klaus, 2017), which runs counter to the intended 

purpose of A66 research to develop a flexible-network commercial aviation 

methodology. As Part 135 AAM/UAM commercial services have yet to be 
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implemented, it is impossible to account for all possible future network states, as would 

be necessary when utilizing the backward induction approach. 

 

The analytical steps for applying the forward induction approach were as follows: 

1. Airport-level passenger weights were developed through the A66 AAM/UAM 

Transportation Integration Forecast Methodology (Phase II). 

2. The airport-level passenger weights developed through the A66 AAM/UAM 

Transportation Integration Forecast Methodology (Phase II) were applied to the 

metropolitan-level TAF-M passenger counts to produce TAF-M2 passenger counts for 

each airport within selected U.S. CSAs. 

3. The adjusted TAF-M2 passenger counts for each airport within selected U.S. CSAs 

were converted to TAF-M2 Part 121 enplanement estimates. 

4. Based on the 100,000 Part 121 enplanement threshold designated by the TAF-M 

Methodology, airports within the selected U.S. CSAs were reclassified as active TAF-

M2 airports or non-TAF-M2 airports. 

5. The TAF-M2 route ratios were updated accordingly to inform calculations for the 

subsequent year. 

6. The enplanement numbers in each CSA were updated according to the TAF-M2 CSA 

passenger numbers, where the updated CSA-level enplanements were used for next 

year’s TAF-M prediction. 

7. Step 1 – Step 5 were iteratively repeated for each year until final results were obtained 

for 2050. 

Figure 1 presents a visual illustration of the TAF-M2 process outlined above. Figure 2 shows the 

data flow between TAF-M and TAF-M2. 

 

 

Figure 1. TAF-M2 Application of the Forward Induction Approach 
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Figure 2. The data flow between TAF-M and TAF-M2. 

 

3.4 Limitations and Potential Adjustments for Future Research 

The proposed methodology contained the following limitations: 

• The assumption that all census tracts have the same parameters (𝛽𝑇𝑖𝑚𝑒, 𝛽𝐶𝑜𝑠𝑡, 𝛽𝐹𝑎𝑟𝑒 ,

𝛽𝐹𝑙𝑖𝑔ℎ𝑡𝑠, 𝛽𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟, 𝛽𝑃𝑒𝑟𝑓𝑜𝑟𝑚, 𝜇𝑑) for the nested logit choice model may not be robust 

enough. This could be improved as in-field data regarding transportation modes to the 

airport for each census tract is obtained. 

• The assumption that the emergence of Part 135 AAM/UAM services will not impact 

on the coefficients of the nested logit choice model may not be strong enough. It could 

be updated to accommodate new data on Part 135 AAM/UAM commercial services 

when available in the future. 

• The mathematical model pertaining to passenger decisions utilizes a very simplified 

formula (Equation 1B and 2B). In reality, passengers often have incomplete 

information or make irrational choices. Furthermore, personal preference (e.g., the 

acceptance rate of Part 135 AAM/UAM commercial services) is not considered in this 

research. 

Regarding potential adjustments for future research, the proposed methodology allows for 

additional variables (e.g., travel purpose, residency status, passenger demographics) to 

conveniently be considered so long as the appropriate data is available, increasing the flexibility 

of this model. 

Furthermore, if additional field data pertaining to the variables listed in Equations 1B – 8B are 

available, the model can be improved through the incorporation of this additional field data or by 

imposing additional constraints so model calibration can be enhanced. The methodology to refine 

the model based on ground truth data is included in Appendix G.  

Additionally, this framework allows for future research to nest airports by various characteristic 

categories (e.g., passenger count, airlines present), allowing different sets of coefficients to be 

considered by airport category. 
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METRO-SPECIFIC PARAMETERS FOR AAM FORECAST 

METHODOLOGY 

In this section, the A66 performers focused on refining and operationalizing the A66 AAM/UAM 

Transportation Integration Forecast Methodology by incorporating metro-specific parameters for 

selected CSAs and developing the corresponding Python scripts to produce the required 

parameters. This process included defining and enumerating internal geographic areas within each 

targeted MSA, data collection, and development of Python scripts for the methodology that guided 

by insights and constraints gathered in prior sections.  

Following the delineation of these targeted CSAs, the team implemented the full A66 AAM/UAM 

Transportation Integration Forecast Methodology using Python, building upon earlier algorithmic 

development. The resulting system was then used to generate metro-specific input parameters 

necessary for the final implementation of the TAF-M2 model in the following section. This 

included leveraging the metropolitan ranking framework and the developed modeling and 

simulation outputs. 

4.1 Data Collection 

One of the objectives of this section is to document the sources of all relevant data for the targeted 

CSAs that informed the A66 AAM/UAM Transportation Integration Methodology within the 

TAF-M2 model. Based on the ranking result in section 2, six CSAs were selected as the target 

CSA for the following process, which were New York, Los Angles, San Francisco, Chicago, 

Miami and Washington DC. Details on where to download the data can be found in Appendix D. 

Instructions on how to download and pre-process the datasets are included in Appendix F.  

4.2 Input Datasets 

The input dataset included the following key data sources:  

• List of airports in the CSA. 

• List of census tracts in the CSA. 

• Travel time and cost from each census tract to the airport in CSA. 

• Population data for each census tract. 

• Airfare for flights departing from each airport. 

• Average transfer ratio for each airport. 

• On-time performance data for each airport. 

• Annual operations and enplanement number for each airport. 

• Ground transportation statistics. 

• The median household income for each census tract. 

• The median household income. 

Since the datasets for on-time performance and average transfer ratios from DB1B are large, the 

downloaded files were not included in the uploaded dataset folder; instructions for download were 

provided in Appendix D.  

4.3 Python Scripts 

Two Python scripts were created for this section, which serve distinct purposes: 
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• Data processing: Processes the downloaded data and outputs the processed datasets for 

the TAF-M2 model. 

• Constrained Optimization: Estimates parameters for the nested logit choice model 

(described in Section 3). The output includes parameters for use in the TAF-M2 model. 

• TAF-M2: Fully documented scripts for proposed TAF-M2 model in Section 3. 

4.4 Dataset Introduction 

• Airport List: A complete list of airports in the CSAs with at least 10 annual operations in 

2023, which include the name of the airport and their corresponding latitudes and 

longitudes.   

• Census Tract List: A comprehensive list of census tracts within the CSA, including 

location and population information.  

• Median Household Income: Census tract-level median household income data and the 

average median household income for the CSA. 

• Travel Time and Cost to Airport: Using Apple Map API to retrieve travel time and 

distance from each census tract to each airport, this included both ground transportation 

and any potential Part 135 AAM/UAM commercial transportation options. Then, 

American Automobile Association (AAA) data was used to calculate private car cost to the 

airport based on distance, and City Cab rates for taxi and ride-share options. Finally, UAM 

Geomatics provided Part 135 AAM/UAM commercial transportation service ticket price 

predictions, which was used to estimate travel mode utility.  

• Airfare: Average airfare data is collected from the Bureau of Transportation Statistics. 

• Airport Transfer: Data on the transfer ratios from each airport from the BTS website, 

which was used to estimate airport utility. 

• On-Time Performance: Data on delays and cancellations sourced from the BTS website. 

• Annual Operations and Enplanements Number: FAA data regarding annual operations 

and enplanement numbers. 

• Annual Passenger Transportation Mode: Airport public data of 2023 for transportation 

mode utility calculations. 

4.5 Parameter Generation 

• Use available transportation and aviation datasets to generate transportation mode 

utility parameters. 

• Utilize TAF-M predicted enplanements at metropolitan airports to derive airport utility 

parameters.  

25-YEARS FORECASTS WITH TAF-M2 MODEL 

In this section, the proposed TAF-M2 methodology in section 3 will be implemented with Python 

scripts for all CSAs and produce annual forecasts over a 25-year planning horizon (2025–2050). 

These forecasts include the predicted enplanements number and the location (latitude and 

longitude) of each airport.  
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5.1 Deliverables 

• Datasets: Incorporates key variables for the six chosen CSAs, including airports, census 

tracts, travel time/cost, population, airfare, median household income, transfer rates, on-

time performance, and passenger numbers. The details of those datasets are included in 

Appendix E.  

• Python Scripts: Fully documented scripts for TAF-M2 model, including data pre-

processing, data-processing, constrained optimization and TAF-M2. Two accompanying 

Microsoft Word documents are provided which introduce a road map of the Python scripts 

and a ReadMe file. 

• Parameters: The transportation parameters, airport parameters and airport heterogeneity 

parameters in the six chosen CSAs. 

• 25-Years Prediction: The enplanement prediction from 2025 to 2050 for each airport and 

corresponding airport latitude and longitude.  

CONCLUSION 

The efforts undertaken in this project established a robust and reproducible framework to evaluate 

the potential impact of Part 135 AAM/UAM commercial transportation integration within the 

NAS. By expanding metropolitan ranking methodologies and embedding a behavioral passenger 

choice model into the TAF-M2 forecasting process, the project delivers a scalable and flexible 

approach to forecasting the redistribution of air travel demand resulting from Part 135 AAM/UAM 

services. 

The developed methodology not only highlights the CSAs most ready for early Part 135 

AAM/UAM adoption but also quantifies the dynamic enplanement impacts such services could 

have over a 25-year planning horizon. While current limitations—such as the absence of 

nationwide behavioral data—necessitated the use of constrained optimization for parameter 

estimation, the framework is designed to accommodate future enhancements as empirical data 

becomes available. 

Overall, this project equips FAA and stakeholders with the data infrastructure, modeling tools, and 

analytical insight necessary to guide Part 135 AAM/UAM integration strategies, investment 

decisions, and regulatory planning in a rapidly evolving transportation landscape. 
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APPENDIX A: VIABLE DATA SOURCES FOR A66 METROPOLITAN 

RANKING METHODOLOGY 

Table 1 details viable data sources pertaining to variables discussed throughout the literature 

review for potential utilization in the proposed A66 Metropolitan Ranking Methodology. As 

discussed in this literature review, it is important to note that social factors will be excluded from 

the proposed methodology due to the lack of requisite data to conduct a nationwide assessment. 

As previously stated, such data collection efforts are beyond the scope of the ASSURE A66 

project. 

Table A.1. Data Sources for the A66 Metropolitan Ranking Methodology. 

Category Variable Definition Data Source Reference 

Urban 

Structure 

Population 

Density 

The number of people living per 

square mile. 
US Census Bureau 

Gerardus et al., 2024 

Olivares et al., 2022 

Polycentrism 

The number of distinct 

employment centers within a 

metropolitan area. 

Arribas-Bel and Sanz-Gracia 

(2014) 

https://www.tandfonline.com/

doi/full/10.1080/02723638.20

14.940693#d1e140 

Arribas-Bel et al.,2024 

Goyal et al., 2018  

Economic 

Scale 

Fortune 1000 

Presence 

The number of Fortune 1000 

company headquarters is located 

within a metropolitan area. 

Fortune 
Godfrey et al., 1999 

Csomós et al., 2014 

Gross 

Regional 

Product 

(GRP) 

The total economic output of a 

region, like GDP but at a 

metropolitan level. 

Bureau of Economic Analysis 

https://www.bea.gov/data/gdp/

gdp-county-metro-and-other-

areas 

Panek et al., 2007 

Goyal et al., 2021 

Reiche et al., 2018 

Personal 

Income 

The average income of 

individuals within a 

metropolitan area. 

S&P Global 

Haan et al., 2023 

Kloss et al., 2021 

Pertz et al., 2023 

Garrow et al., 2018 

Yedavalli et al., 2019 

Congestion 

and Travel 

Time 

Average 

Time to Work 

The average duration it takes for 

commuters to travel from home 

to work. 

US Census Bureau 

Rimjha et al., 2021 

Long et al., 2023 

Zhang et al., 2023 

Travel Time 

Index 

A measure that compares peak 

travel times to free flow 

conditions indicates the severity 

of traffic congestion during peak 

periods. 

Texas A&M Transportation 

Institute 

https://mobility.tamu.edu/umr/ 

Long et al., 2023 

Sarkar et al., 2023 

Texas A&M 

Transportation Institute, 

2023 

Airport to 

CBD Drive 

Time 

The average driving time from 

airports to the CBD in 

metropolitan. 

Google Map 
Haan et al., 2021 

Mahmassani et al., 2024 
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Table A.1. Data Sources for the A66 Metropolitan Ranking Methodology (Cont.). 

 

  

Category Variable Definition Data Source Reference 

Market 

Readiness 

Heliports 

Per Capita 

The number of heliports is 

relative to the population 

in a metropolitan area. 

FAA 
Mahmassani et al., 2024 

Olivares et al., 2021 

Airports 

Per Capita 

The number of airports 

relative to the population 

in a metropolitan area. 

FAA 
Reiche et al., 2018 

Haan et al., 2021 

Regional 

Airport 

The number of regional 

airports in a metropolitan 

area. 

FAA 
Antcliff et al., 2021 

Olivares et al., 2022 

Class B 

Airspace 

Presence (or not) of Class 

B Airspace in MSA 

(binary). 

FAA 

Bauranov et al., 2021 

Mahmassani et al., 2024 

Olivares et al., 2022 

Class G 

Airspace 

Congestion 

Average total aircraft 

operation hours per square 

mile in Class G airspace. 

FAA 
Bauranov et al., 2021 

Olivares et al., 2022 

Existing 

Investment 

UAM launch city or UAM 

headquarters city 

locations. 

UAM Geomatics 
Schuh et al., 2021 

Olivares et al., 2022 

Existing 

Short-Haul 

Market 

Airport 

Short-Haul 

Market 

Stability 

(<150 

miles) 

The volume of flight 

arrival and departure 

points within MSA for 

total flight distances of 

less than 150 miles. 

The Airline Origin and 

Destination Survey 

(DB1B) 

https://www.transtats.bts

.gov/DatabaseInfo.asp?

QO_VQ=EFI&Yv0x=D 

Olivares et al., 2022 
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APPENDIX B: INTRODUCTION OF RANKING DATASET  

Population (Population.xlsx): 

• CSA (string): The name of the CSA 

• Population (int): The total population of the CSA 

Area of Land (US_2023_CensusTract_Centroid_GCS_WGS1984_LAT_LONG.csv): 

• TRACTCE (string): Census tract code 

• STATEFP (int): State FIPS code 

• COUNTYFP (int): County FIPS code 

• ALAND (float): The total land area 

GDP (GDP.csv): 

• GEOName (string): The name of the CSA 

• 2022 (int): The total GDP in 2022 

AAM Launch City (AAM_CITY.xlsx): 

• City (string): The name of the CSA 

• number (int): The count number for city 

AAM Company Headquarter (AAM_Company.xlsx): 

• Headquarters (string): The name of the CSA for headquarters 

• number (int): The count number for headquarters 

Polycentrism (Checked_Poly.csv): 

• MSA (string): The name of the MSA 

• Poly (int): The recorded polycentrism in 2010 

• CSA (string): The name of CSA 

Fortune 1000 Company (fortune1000_2023.csv): 

• Company (string): The company's name 

• HeadquartersCity (string): The city where the company is headquartered. 

• HeadquartersState (string): The state where the company is headquartered. 

GDP (Census_Tract_Population_2020.xlsx): 

• GEO_ID (string): The census tract ID 

• NAME (string): The census tract name. 

• Total_Population (int): The total population of the census tract.  

Average Time to Work (Travel_time.xlsx): 

• CSA (string): The name of the CSA 

• travel_time (float): The average commuting time (minutes)  

Travel Time Index (Travel_time_index.xlsx): 

• Urban Area (string): The name of the city 
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• Year (int): The year of travel time index measurement 

• Travel_Time_Index (float): The travel time index value 

A36 Team Dataset (SSA_data.xlsx): 

• MSA (string): The name of the MSA 

• Class_B (int): Presence of Class B airspace 

• Class_G (float): Average total hours per square mile in Class G airspace 

Airport and Heliport (all-airport-data.xlsx): 

• Facility Type (string): The type of facility. 

• Loc Id (string): The ID of the facility. 

• State Name (string): The latitude of the census tract. 

• City (string): The name of the city 

• County (string): The name of the county 

Local Incentive (Incentive_CSA.csv): 

• CSA (string): The name of the CSA 

• State (string): The state in which the CSA is located 

• Incentive (float): The monetary or policy incentive value associated with the CSA  

Existing Investment (AAM_in_CSA.cxlsx): 

• CSA (string): The name of the CSA 

• Launched (float): The number of AAM locations that plan to launch in CSA 

• Headquarters (float): The number of AAM headquarters located in CSA 

Electrical Consumption (Electrical.xlsx): 

• CSA (string): The name of the CSA 

• Consumption MMBtu (float): The commercial energy consumption measured in MMBtu 

Electrical Consumption in County Level 

(energy_consumption_expenditure_business_as_usual_county.csv): 

• County Name (string): The name of the County 

• State Name (string): The name of the State 

• Year (int): Year 

• Consumption MMBtu (float): The commercial energy consumption measured in MMBtu 

Airport Short-Haul Market (Shor_flight.csv): 

• Airport (string): The airport ID. 

• LONGITUDE (float): The longitude of the airport. 

• LATITUDE (float): The latitude of the airport. 

City to County Cross-table (place_to_county.xlsx): 

• NAME (string): The name of the city 

• STATEFP (int): State FIPS code 
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• COUNTYFP (int): County FIPS code  

CSA to MSA Cross-table (CSA.xlsx): 

• CBSA Code (string): The MSA ID 

• CBSA Title (string): The name of MSA  

• CSA Title (string): The name of CSA  

• FIPS State Code (int): State FIPS code 

• FIPS County Code (int): County FIPS code  

Connecticut New and Old County Cross-table (ct_cou_to_cousub_crosswalk.xlsx): 

• STATEFP (int): State FIPS code 

• NEW_COUNTYFP (int): County FIPS code  

• COUSUB_NAMELSAD (string): The new name of county 

State FIPS Code (state_code.csv): 

• STATEFP (int): State FIPS code 

• STATE (string): The name of state  
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APPENDIX C: SITE SUITABILITY SCENARIOS 

The five categories are assigned weights of 45%, 10%, 15%, and 5% based on the work from Team 

A36. For different scenarios, the emphasis on each category will vary. For example, in the urban 

structure scenario, urban structure is the most important category and has the highest weight. The 

variable weighting for each scenario is shown in Table 1. The Top 20 CSA rankings for these 

scenarios are shown in Tables 2 and 3 (the result of infrastructure readiness is shown in 3.1).  

Table C.1. Variable Weighting for Other Scenarios. 

  
Urban Structure Economic Scale Cong & Com Stress Infr. Readiness Exist. Short Haul 

Category Variable Category Variable Category Variable Category Variable Category Variable Category Variable 

Urban 
Structure 

Population 
Density 

45.0 
22.5 

10.0 
5.0 

15.0 
7.5 

15.0 
7.5 

10.0 
5.0 

Polycentrism 22.5 5.0 7.5 7.5 5.0 

Economic 
Scale 

Fortune 
1000 

Presence 10.0 

5.0 

45.0 

22.5 

10.0 

5.0 

10.0 

5.0 

25.0 

12.5 

GDP per 
Capita 

5.0 22.5 5.0 5.0 12.5 

Congestion 

Average 
Time to 
Work 

15.0 

5.0 

15.0 

5.0 

45.0 

15.0 

25.0 

8.3 

5.0 

1.7 

Travel Time 
Index 

5.0 5.0 15.0 8.3 1.7 

Airport to 
CBD Drive 

Time 
5.0 5.0 15.0 8.3 1.7 

Readiness 

Heliports per 
Capita 

25.0 

3.0 

25.0 

3.0 

25.0 

3.0 

45.0 

5.0 

15.0 

1.0 

Airports per 
Capita 

3.0 3.0 3.0 5.0 1.0 

Class B 
Airspace 

3.0 3.0 3.0 5.0 1.0 

Class G 
Airspace 

Congestion 
3.0 3.0 3.0 5.0 1.0 

Electrical 
Consumption 

5.0 5.0 5.0 10.0 5.0 

Local 
Incentive 

5.0 5.0 5.0 10.0 5.0 

Public & 
Private 

Investment 
3.0 3.0 3.0 5.0 1.0 

Existing 
Demand 

Airport Short 
Haul OD 

<150 Miles 
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 45.0 45.0 
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Table C.2. The Top 20 Suitable CSAs - Urban Structure and Economic Scale Scenario   

Rank Urban Structure Scenario Economic Scale Scenario 

1 New York-Newark, NY-NJ-CT-PA New York-Newark, NY-NJ-CT-PA 

2 Los Angeles-Long Beach, CA San Jose-San Francisco-Oakland, CA 

3 San Jose-San Francisco-Oakland, CA Los Angeles-Long Beach, CA 

4 Miami-Port St. Lucie-Fort Lauderdale, FL Chicago-Naperville, IL-IN-WI 

5 Boston-Worcester-Providence, MA-RI-NH Boston-Worcester-Providence, MA-RI-NH 

6 Chicago-Naperville, IL-IN-WI Miami-Port St. Lucie-Fort Lauderdale, FL 

7 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 

8 Detroit-Warren-Ann Arbor, MI Seattle-Tacoma, WA 

9 Seattle-Tacoma, WA Dallas-Fort Worth, TX-OK 

10 Houston-Pasadena, TX Houston-Pasadena, TX 

11 Dallas-Fort Worth, TX-OK Denver-Aurora-Greeley, CO 

12 Atlanta--Athens-Clarke County--Sandy Springs, GA-AL Atlanta--Athens-Clarke County--Sandy Springs, GA-AL 

13 Philadelphia-Reading-Camden, PA-NJ-DE-MD Nashville-Davidson--Murfreesboro, TN 

14 New Haven-Hartford-Waterbury, CT Salisbury-Ocean Pines, MD 

15 Denver-Aurora-Greeley, CO Charlotte-Concord, NC-SC 

16 Nashville-Davidson--Murfreesboro, TN Minneapolis-St. Paul, MN-WI 

17 Orlando-Lakeland-Deltona, FL Philadelphia-Reading-Camden, PA-NJ-DE-MD 

18 Cleveland-Akron-Canton, OH Raleigh-Durham-Cary, NC 

19 Raleigh-Durham-Cary, NC Phoenix-Mesa, AZ 

20 Allentown-Bethlehem-East Stroudsburg, PA-NJ Detroit-Warren-Ann Arbor, MI 
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Table C.3. The Top 20 Suitable CSAs – Congestion Stress and Short Haul Scenario 

Rank Congestion Stress Scenario Short Haul Scenario 

1 New York-Newark, NY-NJ-CT-PA New York-Newark, NY-NJ-CT-PA 

2 San Jose-San Francisco-Oakland, CA Chicago-Naperville, IL-IN-WI 

3 Los Angeles-Long Beach, CA Los Angeles-Long Beach, CA 

4 Miami-Port St. Lucie-Fort Lauderdale, FL San Jose-San Francisco-Oakland, CA 

5 Chicago-Naperville, IL-IN-WI Seattle-Tacoma, WA 

6 Seattle-Tacoma, WA Atlanta--Athens-Clarke County--Sandy Springs, GA-AL 

7 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA Charlotte-Concord, NC-SC 

8 Denver-Aurora-Greeley, CO Houston-Pasadena, TX 

9 Houston-Pasadena, TX Dallas-Fort Worth, TX-OK 

10 Nashville-Davidson--Murfreesboro, TN Washington-Baltimore-Arlington, DC-MD-VA-WV-PA 

11 Boston-Worcester-Providence, MA-RI-NH Boston-Worcester-Providence, MA-RI-NH 

12 Dallas-Fort Worth, TX-OK Detroit-Warren-Ann Arbor, MI 

13 Atlanta--Athens-Clarke County--Sandy Springs, GA-AL Denver-Aurora-Greeley, CO 

14 Sacramento-Roseville, CA Phoenix-Mesa, AZ 

15 San Antonio-New Braunfels-Kerrville, TX Portland-Vancouver-Salem, OR-WA 

16 Raleigh-Durham-Cary, NC Philadelphia-Reading-Camden, PA-NJ-DE-MD 

17 New Orleans-Metairie-Slidell, LA-MS Miami-Port St. Lucie-Fort Lauderdale, FL 

18 Allentown-Bethlehem-East Stroudsburg, PA-NJ Minneapolis-St. Paul, MN-WI 

19 Las Vegas-Henderson, NV Raleigh-Durham-Cary, NC 

20 Orlando-Lakeland-Deltona, FL Las Vegas-Henderson, NV 
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APPENDIX D: DATA SOURCES FOR TAF-M2 METHODOLOGY 

Table D.1.  Details of the data sources for TAF-M2 Methodology. 

Dataset Name Data Source Link 

Airport List FAA TAF-M 

FAA Class D Airport 

https://www.faa.gov/data_research/aviation/taf 

Census Tract List U.S. Census Bureau https://www.census.gov/geographies/mapping-

files/time-series/geo/tiger-line-file.2023.html#list-tab-

790442341(3.1.0) 

Average Airfare Bureau of Transportation 

Statistics 

https://www.transtats.bts.gov/averagefare/ 

Annual Operations FAA TAF-M https://www.faa.gov/data_research/aviation/taf 

Annual Enplanements FAA TAF-M https://www.faa.gov/data_research/aviation/taf 

Average Airport Transfer 

Ratio 

Airline Origin and 

Destination Survey 

(DB1B-Market) 

https://www.transtats.bts.gov/DatabaseInfo.asp?QO_V

Q=EFI&Yv0x=D 

Transportation Mode LAX and JFK Ground 

Transportation Traffic 

Statistics 

https://www.lawa.org/lawa-investor-relations/statistics-

for-lax/ground-transportation-traffic-statistics 

https://www.panynj.gov/airports/en/statistics-general-

info.html 

Average On-Time Flight 

Performance 

Bureau of Transportation 

Statistics 

https://www.transtats.bts.gov/DL_SelectFields.aspx?gn

oyr_VQ=FGK&QO_fu146_anzr=b0-gvzr 

Travel Time and Distance by 

Transportation Access Mode 

Apple Map API* https://developer.apple.com/documentation/applemapss

erverapi/ 

Travel Cost by 

Transportation Access Mode 

UAM Geomatics 

AAA 

City Cab 

Metro 

 

https://www.uamgeo.com/ 

https://exchange.aaa.com/automotive/aaas-your-

driving-costs/ 

https://lacitycab.com/rates/ 

https://www.metro.net/riding/fares/ 

Population in Census Tract U.S. Census Bureau https://data.census.gov/table/DECENNIALPL2020.P1?

q=Population%20Total&g=010XX00US$1400000 

Median Household Income U.S. Census Bureau https://data.census.gov/table/ACSST5Y2022.S1901?q=

median%20income&g=010XX00US$1400000 

https://data.census.gov/table/ACSST5Y2022.S1901?q=

median%20income&g=010XX00US$3300000 

 

*The Apple Maps API provides automobile and transit (public transportation) information from 

one location to another. If public transportation is unavailable, the time and distance values will 

https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$1400000
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$1400000
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$3300000
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$3300000
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be marked as missing. According to the Apple Maps API website, it includes all types of public 

transportation and accounts for all transfers to the destination. If no public transportation is 

available, the proposed model will exclude the public transportation mode.         

(https://www.transtats.bts.gov/averagefare/) 
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APPENDIX E: INTRODUCTION OF TAF-M2 DATASET  

In this section, we list the variables included in the final datasets that are uploaded as attachments 

(XX stands for the name of the CSA).  

Apple Map API (Apple_ API_XX.csv): 

• census (string): The census tract ID 

• Airport (string): The airport ID 

• Type (string): Transportation mode type 

• Distance (int): The travel distance (meters) for each transportation mode. 

• Time (int): The travel time (seconds) for each transportation mode. 

• Static_Time (int): The travel time (seconds) for driving without traffic. 

• Time_zone (string): The depart time in Coordinated Universal (UTC) time.  

Census tract location (Census_tract_Long_Lat_XX.csv): 

• GEOIDFQ (string): The census tract ID 

• Longitude (float): The longitude of the census tract. 

• Latitude (float): The latitude of the census tract. 

Airport location (Airport_Long_Lat_XX.csv): 

• IDENT (string): The airport ID 

• LONGITUDE (string): The longitude of the airport. 

• LATITUDE (string): The latitude of the airport. 

Airport features (Airport_features_XX.csv): 

• Airport (string): The airport ID 

• Delay (float): The ratio of delayed enplanements at CSA airports. 

• Cancel (float): The ratio of cancelled enplanements at CSA airports. 

• Result: The ratio of enplanements not on time at CSA airports (scaled to the range [0,1]). 

• Fare (float): The average airfare at CSA airports (scaled to the range [0,1]). 

• Frequency (float): The airport annual operations at CSA airports (scaled to the range 

[0,1]). 

• Enplanements (int): The airport annual enplanements at CSA airports (scaled to the range 

[0,1]). 

• Weight (float): The weight of enplanement number for each CSA airport inside the CSA 

metropolitan. 

• Connect_rate (float): The transfer ratio at CSA airports (scaled to the range [0,1]). 

Census tract travel features (census_tract_feature_XX.csv): 

• census (string): The census tract ID 

• Airport (string): The airport ID 

• Type (string): Transportation mode type 

• Distance (float): The travel distance (meters) for each transportation mode. 

• Time (float): The travel time (seconds) for each transportation mode. 
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• Static_Time (float): The travel time (seconds) for driving without traffic. 

• Population (int): The population inside the census tract.  

• Fly_distance (float): The flying distance from census tract to airport. 

• Fly_time (float): The flying time from census tract to airport. 

• Cost_private_car (float): The cost of the travel with private car from census tract to 

airport. 

• Cost_shared_car (float): The cost of the travel with shared car from census tract to airport. 

• Cost_transit (float): The cost of the travel with public transportation from census tract to 

airport. 

Census Tract Population (Census_Tract_Population_2020.xlsx): 

• GEO_ID (string): The census tract ID 

• NAME (string): The census tract name. 

• Total_Population (int): The total population of the census tract.  

Airports and CSA cross-table (airports_within_CSA.xlsx): 

• IDENT (string): The airport ID. 

• CSA (string): The name of the CSA. 

Airfare (Consumer_Airfare_Report_Airport_Pair_Markets.csv): 

• Year (int): The data collected year. 

• quarter (int): The data collected quarter. 

• airport_1 (string): The original airport ID. 

• airport_2 (string): The destination airport ID. 

• fare (float): The flight airfare. 

Airfare Result (XX_Airfare.csv): 

• Airport (string): The airport ID. 

• Airfare (float): The annual average airfare. 

On Time Performance (Ontime_XX.csv): 

• Airport (string): The airport ID. 

• Delay (float): The ratio of delay enplanements at LA airports. 

• Cancel (float): The ratio of cancelled enplanements at LA airports. 

• Result (float): The total delay and cancellation rate at LA airports. 

Transfer in Airport (Airport_Connect_XX.csv): 

• Airport (string): The airport ID. 

• Depart (int): The depart number of the airport. 

• Connect (int): The connection number of the airport. 

• Connect_rate (float): The connect rate in the airport (Connect_rate = Connect/Depart). 

TAF-M Operations (AirportsOperations.xlsx): 

• locid (string): The airport ID. 
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• ayear (int): The year. 

• itn_Ac (int): The air carrier operations. 

Census Tract update in Connecticut (CT_tractcrosswalk_2022.xlsx) 

• tract_fips_2020 (string): The census tract FIPS in 2020. 

• Tract_fips_2022 (string): The census tract FIPS in 2022. 
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APPENDIX F: DATASET DOWNLOAD AND PROCESS 

Location of Census Tract: 

We downloaded the datasets from the FTP of the Census website: 

https://www2.census.gov/geo/tiger/TIGER2023/TRACT/, which provides the census tract 

geographic information for each county. These files were then imported into ArcGIS Pro (version 

3.1.0) to merge all census tracts into a single shapefile layer. Subsequently, ArcGIS Pro was used 

to determine the centroid location of each census tract, and the dataset of census tract centroid 

longitudes and latitudes in the CSA was exported. 

 

 

Location of airports in CSA: 

We downloaded the airport location data from the FAA website: 

https://adip.faa.gov/agis/public/#/airportSearch/advanced, which provides the locations of all 

airports in the United States. This file was then imported into ArcGIS Pro (version 3.1.0) to 

determine whether each airport location falls within the CSA boundaries. Subsequently, the dataset 

of airport and CSA cross-tables for all airports was exported. The Python script Airport.py is used 

to filter the list of airports based on the sponsor's request, specifically selecting airports with 

itinerant Air Carrier numbers equal to or greater than 10 per year. This process generates the target 

list of airports within the CSA.  

 

 

Census Tract Population: 

https://www2.census.gov/geo/tiger/TIGER2023/TRACT/
https://adip.faa.gov/agis/public/#/airportSearch/advanced
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We downloaded the census tract-level population data from the Census website: 

https://data.census.gov/table/DECENNIALPL2020.P1?q=Population%20Total&g=010XX00US

$1400000, and the webpage is shown below.  

 

The downloaded files include numerous columns, and we selected the first three: “GEO_ID,” 

“NAME,” and “P1_001N,” to create a new Excel file containing the census tract ID, census tract 

name, and total population for each census tract.  

Airfare: 

We downloaded the airport-paired airfare data from the U.S. Department of Transportation, 

available at https://data.transportation.gov/Aviation/Consumer-Airfare-Report-Table-1a-All-U-S-

Airport-P/tfrh-tu9e/about_data.  

 

Then, we used the Python script Airfare.py to process the downloaded CSV file. We focused on 

airfare data from 2023 and selected SFO as the destination airport, as it is the most popular route 

https://data.census.gov/table/DECENNIALPL2020.P1?q=Population%20Total&g=010XX00US$1400000
https://data.census.gov/table/DECENNIALPL2020.P1?q=Population%20Total&g=010XX00US$1400000
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in CSA. The average airfare was calculated across all four quarters of 2023 for each airport. The 

output is the average airfare for each airport in CSA. 

 

On Time Performance: 

We downloaded the on-time performance data for each airport from the BTS website at the 

following link: 

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FGK&QO_fu146_anzr=b0-

gvzr.  

 

We selected only the year, origin airport, departure delay indicator (DepDel15), and canceled flight 

indicator for the year 2023 across all months. After downloading the 12 months of datasets, the 

Python script ontime.py was used to process the data and generate the on-time performance for 

each airport.  

 

Transfer in Airport: 
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We downloaded the route information from DB1B market of BTS website at the following link: 

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FHK&QO_fu146_anzr=b4vtv0

%20n0q%20Qr56v0n6v10%20f748rB.  

  

 

We selected the fields “Year,” “Origin,” “Dest,” “AirportGroup,” and “Passengers” and set the 

filter year to 2023 with the filter period as Quarter 1 for downloading. After downloading the 

dataset, we used the Python script Connect.py to process the data and generate the connecting rate 

for each airport.  

 

Median Household Income: 

We downloaded median household income data at the CSA and census tract levels from the U.S. 

Census. The data can be accessed at the following link:  

https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$33

00000 (CSA) 

https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FHK&QO_fu146_anzr=b4vtv0%20n0q%20Qr56v0n6v10%20f748rB
https://www.transtats.bts.gov/DL_SelectFields.aspx?gnoyr_VQ=FHK&QO_fu146_anzr=b4vtv0%20n0q%20Qr56v0n6v10%20f748rB
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$3300000
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$3300000
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and 

https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$14

00000 (Census Tract).  

 

From the downloaded dataset, we selected three columns: “GEO_ID,” “NAME,” and 

“S1901_C01_012E” (estimated median household income) to create a new Excel file for further 

processing.  

 

 

 

  

https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$1400000
https://data.census.gov/table/ACSST5Y2022.S1901?q=median%20income&g=010XX00US$1400000
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APPENDIX G: METHODOLOGY REFINEMENT WITH GROUND TRUTH 

DATA 

Once actual data becomes available, the initial model will be evaluated by comparing its 

predictions with the actual system outputs. The error will be measured as the difference between 

the model’s predictions and the observed values. This error can be quantified using metrics such 

as Mean Squared Error (MSE), Mean Absolute Error (MAE), or Root Mean Squared Error 

(RMSE). The RMSE equation is listed below: 

                                                                                            (1) 

Where: 𝐸𝑖 is the initial error reported, 𝑃𝐶𝑜𝑢𝑛𝑡 is the actual airport passenger, 𝑃𝐶𝑜𝑢𝑛𝑡(𝛽, 𝜇𝑛) is the 

proposed model predicted and n is the total number of observations from the ith airport. We assume 

that model refinement will be specific to each airport, given that the utility function varies from 

one airport to another. While the initial model will be broadly applicable to all airports, subsequent 

refinements will be tailored to the specific characteristics of each airport. 

To reduce the error, the model parameters will be fine-tuned to better fit the data. This process 

involves adjusting the coefficients or other parameters within the model. Once the model is 

improved, the error will be recalculated to evaluate the performance of the revised model: 

                                                                               (2) 

Here, 𝐸𝑢  is the error from the revised model. To determine the model improvement, the difference 

in the error can be observed as follows: 

                                                        ∆E = Ei − Eu                                                        (3) 

If ∆E > 0, means the error is reduced. The acceptability of the error is often judged by whether the 

error reduction reaches a plateau or becomes negligible (ϵ), indicating that further refinements are 

unlikely to produce significant improvements. 

                                                                                                                    (4) 

Where ϵ is a small threshold value that represents the tolerance for error reduction. If this condition 

is met, it suggests that the model’s performance is near its optimal level, and the error is within an 

acceptable range. Conversely, if the reduction in error is small or negligible over successive 

iterations, this might suggest that the model has reached its best possible performance, and further 

tuning may not be necessary. 

 

 


